
Physically Addressed Queueing (PAQ):

Improving Parallelism in Solid State Disks

Myoungsoo Jung, Ellis H. Wilson III, Mahmut Kandemir
Department of Computer Science and Engineering

The Pennsylvania State University
{mj, ellis, kandemir}@cse.psu.edu

Abstract

NAND flash storage has proven to be a competitive alter-

native to traditional disk for its properties of high random-

access speeds, low-power and its presumed efficacy for

random-reads. Ironically, we demonstrate that when pack-

aged in SSD format, there arise many barriers to reaching

full parallelism in reads, resulting in random writes out-

performing them. Motivated by this, we propose Physically

Addressed Queuing (PAQ), a request scheduler that avoids

resource contention resultant from shared SSD resources.

PAQ makes the following major contributions: First, it ex-

poses the physical addresses of requests to the scheduler.

Second, I/O clumping is utilized to select groups of op-

erations that can be simultaneously executed without ma-

jor resource conflict. Third, inter-request NAND transac-

tion packing empowers multi-plane-mode operations. We

implement PAQ in a cycle-accurate simulator and demon-

strate bandwidth and IOPS improvements greater than 62%

and latency decreases as much as 41.6% for random reads,

without degrading performance of other access types.

1. Introduction

NAND flash-based devices such as Solid State Disks

(SSDs) are becoming increasingly popular in a number of
markets. Flash has already become the dominant storage

technology in mobile devices for its low-power, density, and

resilience to shock. Moreover, flash-based SSDs are making
significant inroads into consumer computers such as lap-

tops as well as enterprise applications such as Storage-Area-

Networks (SANs) and even high performance computing
(HPC). Their lack of moving parts – perhaps the biggest

problem with magnetic disk – allows them to serve random
requests at a far higher rate than disks. However, care needs

to be used when writing to these devices, as flash memory

cells wear out with overuse. Therefore, write-heavy work-
loads are not well-suited for these devices. For such rea-

sons, enterprise and HPC areas have strongly considered

SSDs for workloads rife with reads, especially for applica-
tions that demonstrate mainly random access patterns.

Such use-cases make sense when considering individ-

ual flash memory cells, which are biased towards reading,
showing typically between ten and forty times better perfor-

mance for reads than writes. This is due to a significant du-

ration disparity for the three basic operations in flash: read,
write, and erase. Perhaps more importantly, this disparity is

exacerbated by the requirement that if a block to be written

is not already free, an erase must precede the write. Specif-
ically, while reads operate on the tens of microseconds, a

write takes hundreds of microseconds, and an erase requires

thousands of microseconds. Therefore, if a write occurs to
an occupied block, an erase latency plus the write latency is

incurred. This problem becomes worse for writing to a sub-

set of a block such that existing data therein will be kept.
These situations require all three operations: first perform a

read, then an erase, and finally write the block down with

a mix of new and old data. For the latter two – erase/write
and read/erase/write – the latency of writing to an SSD ap-

proaches that of spinning disk.
Due to this vast disparity in latencies, internal research

on SSDs (mostly on the flash translation layer such as in [2])

has been concentrated on avoiding the costs of doing such
writes. However, since flash cannot yet match the density-

to-cost ratio spinning disk excels at, external research con-

sidering the use of SSDs rather than the development of
them has focused on their use as a cache to alleviate the

I/O-latency gap between memory and disk [20][5][16]. As

a cache, researchers capitalize on the presumed efficacy in
serving random reads when compared to spinning disk, and

often the caching algorithms employed avoid performing

large numbers of writes in order to extend the SSDs life-
time and to avoid the high penalties of writes. These two

divergent research directions – internal research working
to improve writes and external research developing mecha-

nisms to capitalize on improved performance for reads ver-

sus writes – have resulted in a poor research landscape.
Ironically, when one examines the random-read versus

random-write performance for SSDs, what is witnessed is

often a performance benefit for random writes instead of
random reads, due to difficulty experienced in achieving

parallelism for reads, but ease in doing so for writes. This

particularly strange reversal of expected performance tends
to be glossed over or completely ignored in many prior stud-

NAND

Flash

NAND

Flash

CTRL
C

H
A

N
N

E
L1

NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E

L2

NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E

L3

NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E

L4

E
m

b
e

d
d

e
d

 P
ro

ce
ss

o
rs

SSD Internals

H
o

st
 I

n
te

rf
a

ce
 C

o
n

tr
o

ll
e

r

k
*

j
B

lo
ck

s

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

1 Block 1 Block

DIE 1

PLANE 0 PLANE j

k Blocks k Blocks

Die 0 Die 1 Die 2 Die 3

Multiplexed Interface

Flash Package Internals

Die Internals

Figure 1. Physical internal architecture of

SSD.

ies. However, it is a critical issue that deserves attention es-

pecially for enterprise applications seeking to utilize these
devices as caches for their efficacy for random-reads.

1.1. Contributions

First, we identify areas where resource contention may
exist that cause degraded random-read performance. We

then develop and present a new request scheduling algo-

rithm that maximizes performance by avoiding internal re-
source conflicts. We propose Physically Addressed Queu-

ing (PAQ), a request scheduler that is in part inspired by

physical address-based memory scheduling techniques [11,
17, 18, 21, 23] and improves random-read performance by

avoiding conflicts for I/O requests. To our knowledge, there

is no published work that proposes a scheduler that utilizes
physical addresses to optimize performance for SSDs. We

summarize our major contributions below:
• QBM Relocation: In order to identify and avoid con-

tention for shared SSD resources, we propose to move the

queue and buffer management (QBM) functionalities, typ-
ically located within the host interface logic, beneath the

flash translation layer (FTL). This exposes physical ad-

dresses to PAQ, instead of relegating it to work solely with
logical block addresses (LBAs).

• I/O Clumping: We classify conflicts into groups based

on the physical SSD component(s) they share, which pro-
vides a framework we use when performing conflict avoid-

ance and improving parallelism within the SSD.

• I/O Request Rescheduling: With the ability to identify
a request’s physical addresses and a framework to “clump”

groups of sub-requests together that do not conflict, we
present our new queuing algorithm, PAQ, that reschedules

requests such that conflicts are avoided.

• Plane Packing: The last level of parallelism within
the SSD – plane-level parallelism (see Section 2.1) – re-

quires a number of constraints to be satisfied. We show

that, given access to the physical addresses of a request’s
accesses, PAQ can identify more accesses between requests

that can benefit from multi-plane mode to improve paral-

lelism.
Using our modified SSD architecture and our proposed

PAQ algorithm, we seek to demonstrate greatly improved

read latencies for random accesses. Our experimental anal-
yses indicate improvements over traditional scheduling in

bandwidth, IOPS, and average latency. Specifically, for
bandwidth, we see as high as 62.7% and in the average case

32.6% improvements. For IOPS, PAQ demonstrates as high

as 62.6% and in the average case 32.7% improvement. And
finally, we witness as high as 41.6% and in the average case

25.1% improvement in latency. Further, in all cases tested,

PAQ results in performances at least as good as those for
traditional scheduling.

2. Background

Flash storage presents the first serious departure from

the magnetic storage that were studied for decades. With
it come a host of new characteristics and nuances; consid-

erably more than were present in rotational magnetic disk.
While many prior studies have already explored the finer

details of flash characteristics, it is critical to at least have

a basic background on the medium to appreciate the ben-
efits of our proposed Physically Addressed Queuing. To

that end, in the following subsections we present a cursory

overview of NAND flash architecture and details of one par-
ticularly high-potential but underutilized access mode avail-

able in SSDs.

2.1. High-Level Architecture of SSD

A subset of the physical internals relevant to our work

are shown in Figure 1, and represent typical hardware used
in commercial SSDs [22, 2, 10]. There are four main levels

that increase parallelism in an SSD:

• Channels. At the highest level, there exist multiple
channels that are operated by embedded processors; each

can be operated in a completely independent fashion.

• Flash Packages. Each channel is shared by flash pack-
ages for transmitting data and operation messages.

• Dies. Within each NAND flash package are one or

more dies, each sharing one or more buses upon which
their communication is interlaced via a chip enable (CE)

pin. This leads to a reduction in I/O bus complexity but also

adding potential for contention over the CE pin by requests.
• Planes. Finally, within each die exist one or more

planes, the smallest unit to serve an I/O request in a par-
allel fashion. Each plane shares a wordline for accessing

the flash memory cells, which leads to the important conse-

quence that multiple requests can be served simultaneously
in a single wordline access. However, in order to do so, the

requests must adhere to the plane-addressing rule, a con-

straint we expand upon in the following section.
A subset of the relevant software layers are shown in Fig-

ure 3, and are described below:

512B1K 2K 4K 8K 16K32K64K128K

0

2

4

6

8

10

12

14

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

Transfer Size

 SSD-A Rand. Read
 SSD-A Seq. Read
 SSD-A Rand. Write
 SSD-A Seq. Write

(a) Latency (SSD A)

512B1K 2K 4K 8K 16K32K64K128K

0

2

4

6

8

10

12

14

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

Transfer Size

 SSD-B Rand.Read
 SSD-B Seq. Read
 SSD-B Rand.Write
 SSD-B Seq. Write

(b) Latency (SSD B)

512B1K 2K 4K 8K 16K32K64K128K
0
20
40
60
80
100
120
140
160
180
200
220
240
260

Ba
nd

w
id

th
 (M

B/
s)

Transfer Size

 SSD-A Rand. Read
 SSD-A Seq. Read
 SSD-A Rand. Write
 SSD-A Seq. Write

(c) Bandwidth (SSD A)

512B1K 2K 4K 8K 16K32K64K128K
0
20
40
60
80
100
120
140
160
180
200
220
240
260

Ba
nd

w
id

th
 (M

B/
s)

Transfer Size

 SSD-B Rand.Read
 SSD-B Seq. Read
 SSD-B Rand.Write
 SSD-B Seq. Write

(d) Bandwidth (SSD B)

Figure 2. Average response times and bandwidth results as transfer sizes varies under two commer-

cial SSDs.

PHY

QBM

FTL

HAL

HIL VIRTUAL

ADDRESS

PHYSICAL

ADDRESS

ADDRESS

SPACE

Figure 3. Software stack of an SSD.

• Host Interface Layer (HIL): The HIL is responsible

for communication between the host system and underly-
ing layers within the SSD. Specifically, it performs pars-

ing of I/O commands, hand-shaking based on the interface

protocols, initiating data transfer, and committing NAND
transactions to underlying layers. The raw communication

protocol portion of the responsibilities are handled by the

Physical layer (PHY), whereas responsibilities related to
I/O scheduling and buffering are dealt with by the Queue

and Buffer Management layer (QBM).
• Flash Translation Layer (FTL): The FTL is responsi-

ble for address translation between the host address space,

which contains virtual or logical addresses, and the phys-
ical address space, which fully specifies the channel, flash

package, and flash die where the data is located.

• Hardware Abstraction Layer (HAL): The HAL is a de-
vice driver, which manages physical NAND flash memory.

It is charged with committing NAND transactions to the un-

derlying flash memory, and periodically checks each flash
package to monitor transaction statuses.

2.2. Multi-Plane Mode Operation

Besides the three basic NAND operations we mention

earlier – read, write and erase – there exist a number of ad-
vanced modes and operations that seek to improve NAND

parallelism but come with constraints that must be adhered

to in order to achieve such performance. Multi-plane mode ,
operations serve multiple requests simultaneously by send-

ing them together down the same wordline. This mode has

the potential to improve performancen times the number of
planes attached to a particular wordline, but comes with the

caveat that these requests must target the exact same page

offset in a block, the exact same die address, and indicate

different plane addresses.

3. Random Writes vs. Random Reads

While the objective to simplify SSD design is achieved

via resource sharing, what is not readily expressible through

the physical diagram is the potential for conflicts between
requests that end up contending for such a shared resource.

While contention is low and parallelism is high for writes

due to data layout independence, such parallelism is not as
easily achieved for reads. Specifically, in order for a read

to occur, there must be some data to be read, and that data

must reside in a particular block.This results in a very rigid
performance dependence upon data layout and access se-

quence, leading to queues of requests sprouting up, which

strangles parallelism. In addition, the QBM, in its current

position above the FTL, is helpless to do anything about

such performance dependence because it solely has knowl-

edge of the virtual address – there is no way for it to intelli-

gently reorder accesses to decrease conflicts.

To validate our concerns regarding random read perfor-
mance, we performed tests on two commercial Samsung

470 series SSDs manufactured in 2010, which we hereafter

refer to simply as “SSD A” and “SSD B”. In these tests, we
used the IOmeter characterization tool [13] to perform se-

quential writes, sequential reads, randomwrites and random

reads, each for nine separate transfer sizes ranging from 512
bytes to 128 kilobytes for both drives, and allow at most 16

outstanding I/Os to exist at any given time. The amount of

data moved by the tool fills about 80% of both SSDs.
Both SSD A and SSD B utilize 32 nm fabrication pro-

cess NAND flash memory packages, employ a DDR2 flash
interface (144Mbs), and employ Samsung’s second genera-

tion S3C29MAX01 controller. ARM-based multi-core pro-

cessors with dual-cache chips manage the SSD internals,
and the host interface is connected via Serial ATA Gener-

ation 2 (3Gbps). The size of the DRAM cache employed

in both devices is 256MB, comprised of two DRAM chips
having 667Mbps data rate. The first drive, marked “SSD

A,” has a capacity of 64GB and operates using 4 channels

and 16 packages. The second drive, marked “SSD B,” has a
capacity of 256GB and operates using 8 channels and 64

packages. While manufacturers do not publicize exactly

how many dies are in each package, single-, dual-, quad-
, and octal-die package are all possibilities in production.

We suggest that for these devices dual-die package is most
likely based on the price point and the date manufactured.

The results of our tests are shown in Figure 2. Specifically,

Figures 2(a) and 2(b) plot variances in latency as trans-
fer size is increased for SSD A and SSD B respectively,

and Figures 2(c) and 2(d) show variance as transfer size in-

creases in terms of overall bandwidth.
In the latency results, for SSD A, random reads and se-

quential reads perform similarly, but both are still far worse

than either types of the writes by at least 25% and as high
as 361%. For SSD B, there exists a clear case that while

all other operations incur approximately the same laten-

cies, random reads suffer by at least 56% to at most 319%
in comparison. The bandwidth results tell a very similar

story, but bring to light the increasing gap as transfer size

increases. In all cases tested, random writes outperform
random reads, in direct contrast to what a majority of the

literature on flash memory would lead one to believe. It
should be noted that, read operations tested are not affected

by any transactions related to garbage collection activities

because read and write tests for both latency and through-
put are performed in an entirely separate fashion. Also, note

that the fraction of DRAM that might be used for buffering

I/Os is about 0.48% (SSD A) and 0.12% (SSD B) in our
tests. In practice, the fraction of DRAM for buffering I/Os

is even smaller because it is concurrently used for maintain-

ing metadata and in-memory data structures of the FTL.

4. Physically Addressed Queuing

In order to improve the poor random-read performance

we demonstrated above, we propose a new request schedul-

ing scheme named Physically Addressed Queueing (PAQ).
Unlike previous schedulers who do not have access to the

physical addresses of requests, with PAQ we propose mov-

ing the QBM layer out from the HIL and beneath the FTL
to provide such crucial functionality. With exposure of the

physical layout to our PAQ scheduler, we are able to pos-

itively identify requests that will cause conflicts as they
concurrently contend for the same resources. Using these

physical addresses, we present a classification system for
conflicts, and describe how PAQ can aggregate groups of

requests together that do not share conflicts. Such groups

of requests without interdependence we term a clump1, and
we show that PAQ works to build clumps in a conflict-

first bottom-up fashion such that total contention is re-

duced and SSD performance is improved. Last, we discuss

1While related, clumping differs from memory request coalescing in

that clumping does not combine multiple requests into one, nor does it

remove duplicate requests [9]. The main purpose of clumping is to avoid

conflicts between requests.

PHY

QBM

FTL

HAL

HIL VIRTUAL

ADDRESS

PHYSICAL

ADDRESS

ADDRESS

SPACE

Figure 4. Firmware layers within a SSD.

71615141312121

CH 1 CH 1 CH 1 CH 1 CH 1 CH 2 CH 3 CH 4

P1 P1 P1 P2 P2 P2 P1 P1

D1 D1 D2 D1 D2 D1 D4 D1

DOMAIN

CLUSTER

NODE

8281

CH 4

P1

D4

CH 4

P1

D4

654321

Physical Address

Tag ID

4131232221131211Virtual Address 6151

Figure 5. An example that shows PAQ conflict

classification. CH, P and D denote channel,

package, and die, respectively.

how PAQ can improve multi-plane mode performance im-

mensely given the physical layout of requests, which is an
optimization that can orthogonally improve overall perfor-

mance.

4.1. QBM Migration

Since the QBM layer must be exposed to physical ad-

dresses of requests in order to make intelligent decisions

that decrease conflict, we propose migrating the QBM out
of the HIL and positioning it directly beneath the FTL. This

migration is visually depicted in Figure 4, where the hori-

zontal line separates the virtual and physical address spaces.
This change is achievable in practice because the PHY

and QBM layers operate within distinct protocols. Specifi-
cally, in the SATA interface, while the PHY layer resides in

the physical, link and transport layers defined in the SATA

protocol, the QBM resides in the application layer, allowing
for migration of the QBM without necessitating changes to

existing manufacturing processes or established protocols.

4.2. Conflict Classification

To build a queuing mechanism that can identify and
properly schedule around contention, we first propose the

following conflict classification framework:
• Domain: a set of requests that require access to the

same channel. Concurrently scheduling requests in a do-

main increases the potential for channel I/O bus contention,
but also has the potential to exploit parallelism by interleav-

ing requests across multiple flash packages and dies.

• Cluster: a set of requests requiring access to the same
flash package. A cluster may contend for the same NAND

I/O bus in accessing a package, which incurs domain-level

311 51 61 81
1221 13 23 41
12 3 2 4

4121 71

82

1311 61

51

11 6

5

2
22
2

CLUMP1

CLUMP2

CLUMP3

Requests are Interleaved in die-level

Tag ID
Virtual Address
Physical Address

T
im

e
 f

lo
w

(a) PAQ scheduling

T
im

e
 f

lo
w

21
11
1

31
12
1

41
13
1

1
21
2

Die-level block

2
22
2

61
23
2

51
31
3

71
61
6

81
41
4

82
51
5

Die-level blockR
e

q
u

e
st

s
a

re
 I

n
te

rl
e

a
v

e
d

 i
n

 d
ie

-l
e

v
e

l

Parallelizing requests (concurrently served)

Tag ID
Virtual Address
Physical Address

(b) VAQ scheduling

Figure 6. An example that compares PAQ

scheduling to traditional VAQ scheduling.

conflicts. However, the requests in a cluster enjoy die-level

interleaving parallelism if no node-level conflict exists.
• Node: a set of requests that require access to the same

flash die. A node always incurs resource conflicts, and it

also has the potential for a number of resource contentions
among the requests in same domain and cluster, including

NAND flash register, NAND I/O bus, and channel I/O bus.

The fact that each level incurs conflicts at its level and all
levels above it is a critical part of conflict classification. To

visualize this inclusive hierarchy, Figure 5 provides an ex-

ample of requests in the command queue, alongwith the vir-
tual and physical addresses of the transactions within those

requests. Beneath the transactions, we show what chan-

nels, packages and dies the transactions require access to.
We also demarcate potential conflicts using rounded rect-

angles surrounding all transaction targets that are the same
physical component. Domains are indicated using a solid-

rounded rectangle, clusters using a dotted-rounded rectan-

gle, and nodes using a dot-dashed-rounded rectangle. The
resulting set of clumps PAQ constructs is shown in 6(a).

In the simplest case, for request ID #3, it requires access

to LBA 31, physical address 51, channel 2, package 2 and
die 1. As it is the only request in the queue seeking to ac-

cess channel 2 (no node-, cluster- or domain-level conflicts

exist), it is free from conflict and may be executed immedi-
ately. However, if we look at a more complicated scenario

resultant from request ID #2, we see that it is attempting to

access physical addresses that exist along two channels, two
packages, and two dies. This request causes domain- and

cluster-level conflicts with request ID #1, and also results in
domain-, cluster- and node-level conflicts with other trans-

actions in the same request. Therefore, even for a command

queue with solely a single request, there may exist conflicts
between multiple transactions in that request. While con-

flicts occur for accesses to the same channel, package, or

die, it is important to note that the window of conflict is
wider for lower levels due to a pipelining of each transac-

tion through the architecture, resulting in a slightly more

Even Odd Even Odd

Even Odd Even Odd

Die 0 Die 1

C
H

 1
C

H
 2

7372356742Physical Address

Die 0 Die 1

Package 2

Package 1

4321Tag ID

5141333231232221Virtual Address

Figure 7. Plane packing in PAQ.

complex landscape for conflicts.

4.3. Clump Composition

With the physical addresses available to the QBM layer,

and a classification scheme that allows us to identify con-
flicts and their location, we construct our PAQ scheduling

algorithm around the following two intuitions: (i) lower-

level conflicts are most costly – PAQ should avoid them
if possible, and (ii) if PAQ can schedule a single transac-

tion from an area of conflict while doing other work and

only later execute the other contentious operation, it can
avoid contention while achieving parallelism. These intu-

itions lead us to establish the following goals on how PAQ

should perform clump composition, the most critical con-
tribution of our work: (Goal #1) Add transactions incurring

conflicts in the lowest levels first. (Goal #2) For node- and
cluster-level conflicts, never schedule a clump such that ei-

ther would have greater than one transaction issued concur-

rently from it. (Goal #3) Continue adding transactions to
the clump, prioritizing for low-level conflicts, until no more

can be added without breaking Goal #2. Succinctly, PAQ

attempts to build clumps in a bottom-up, conflict-first fash-

ion such that the lowest level with contention does not have

conflicting transactions in the clump.

To properly compare our PAQ clumping strategy, let us
observe how requests in Figure 5 would be handled by the

default (traditional) scheduling scheme, which we name

Virtually Addressed Queuing (VAQ), when compared with
how PAQ handles the exact same situation (depicted in Fig-

ure 6(a)). Due to lack of space, we do not go over the exam-
ple presented in Figure 6 in detail. In short, VAQ handles

requests in a FIFO nature because it has no better option

without access to the physical addresses, resulting in six
separate request sets being issued, of which only two have

the opportunity to execute in an interleaved fashion. PAQ,

on the other hand, is able to view the physical addresses and
therefore optimizes its submissions to solely three separate

request sets, all of which can be interleaved.

4.4. Plane Packing

In theory, multi-plane mode operation should allow

SSDs to achieve nx speedup (where n is the number of
planes in a NAND flash), since n pages can be served si-

multaneously. However, such a speedup is generally not

reached because traditional VAQ is ignorant of physical ad-
dresses, which is a prerequisite to intelligently constructing

multi-plane-mode operations. Further, since traditionally

the underlying FTL is oblivious of the device-level queue
and requests therein, it is not possible for the FTL and

HIL to collaborate to construct multi-plane mode requests.
For example, in Figure 7, even though a VAQ scheduler

would reorder commands in an attempt to satisfy the plane-

addressing rule, the order of transactions associated with
the reordered commands is still not sufficient to build multi-

plane-mode operations; without knowledge of the physical

addresses, it is purely luck for the FTL to be able to execute
multi-plane mode transactions.

4.5. Implementation of PAQ Scheduling

head lpn := tag.lsn % the size of page
tail lpn := (tag.lsn + tag.length) % the size of page
/* get physical address info and record */

while head lpn != tail lpn do

if tag.req type = read then

ppn := ftl.translate physical address(head lpn)
pair(ch id, flash id) := ftl.parse channel and way(ppn)
pair(die id, plane addr) := ftl.parse die and plane(ppn)
nand trans := build trans(ppn)
add(nand trans, clump table[ch id][flash id])
device queue.push back(tag)
send ack(tag)

else

device queue.push back(tag)
send ack(tag)
ftl.page basis commit(head lpn)

head lpn += 1

Algorithm 1: adding io request(tag). Note that address trans-

lation for read requests occurs before the actual data transfer begins.

Algorithms 1 and 2 describe how our approach is im-

plemented and manages PHY and QBM, respectively, of

the HIL. First, for the PHY management, address transla-
tion occurs between the time pre-information (called a tag,

which includes information like logical block address and

request size) is received, and the time an acknowledgment
is sent (if the request type is read). For requests that are

not a read, the PHY sends the acknowledgment first and by-
passes the request to the underlying FTL. The reason behind

these two different strategies is that the addresses of read are

decided at write time, for quick translation. In contrast, in
the write case, the decision of the physical target has not yet

been determined by the FTL.

Once the PHY translates the physical address for the read
request, it adds information along with the physical address

into a table, called the clump table. It should be noted that

foreach ch id := 0 ... n do

foreach flash id := 0 ... m do

/* build clump */

prev tag := check and wait(ch id, flash id)
if prev tag.committed trans = 0 then

device queue.release(prev tag)

trans := get trans from node(tag, clump table[ch id][flash id])
if trans is not assigned then

trans := get trans from cluster(tag,
clump table[ch id][flash id])

if trans is not assigned then
trans := get trans from domain(tag,
clump table[ch id][flash id])

if trans is not assigned then
pair(tag, trans) :=
get another req(clump table[ch id][flash id])

/* packing */

assoc trans := get associate plane trans(tag,
clump table[ch id][flash id])
trans := packing(trans, assoc trans)
hal.commit(ch id, flash id, trans)
tag.committed trans += 1

Algorithm 2: read data transfer(tag). Serving I/O request and

managing QBM.

the latency incurred from the computation overhead in ad-

dress translation can be hidden by overlapping it with the

process of receiving the tag and sending an acknowledg-
ment. When the device-level queue is not empty, from the

front of the queue, the QBM commits NAND transactions
to the underlying HAL by visiting each entry of the clump

table associated with the target tag and attempting to iden-

tify and issue requests conflicting in the lowest level possi-
ble first. In the case that there are no requests found hav-

ing node- or cluster- or domain-level conflicts, the QBM

will simply issue any transaction headed for the currently
selected NAND flash by identifying one in the clump ta-

ble. Once the QBM commits the transaction, it moves on to

perform the same process for the next NAND flash and its
associated entries.

5. Experimental Setup

5.1 NAND Flash SSD Simulator

To implement and evaluate PAQ, we required a high-

fidelity simulator that was capable of capturing cycle-level

interactions between the many components in an SSD.
While there exist a few well-known SSD simulators such as

Microsoft Research Lab’s SSD extension [2] to DiskSim [4]

and FlashSim [19], neither of these nor most others deliver
the high-fidelity results we require. Consequently, we de-

veloped a cycle-accurate NAND flash simulator 2 that pro-

vides: (i) Fine-grained NAND command handling, so that
conflicts between competing commands are made evident

(ii) Advanced command implementation with maintenance

2The source code of this simulator [14] can be downloaded from

http://www.cse.psu.edu/∼mqj5086/nfs.

Write I/Os Read I/Os Percent

random-

write

Percent

random-

read

fin1 4,099,354 1,235,633 97.86 96.98

fin2 653,082 3,046,112 99.2 97.49

web1 212 1,055,236 99.06 93.53

web2 990 4,578,819 100 93.33

web3 1,260 4,260,449 99.84 91.25

usr1 1,333,406 904,483 94.23 92.2

usr2 3,857,714 41,426,266 96.24 88.97

usr3 1,994,612 8,575,434 97.02 82.77

prn1 4,983,406 602,480 76.4 88.6

prn2 2,769,610 8,463,801 97.16 90.5

sql1 1,423,458 606,487 93.5 89.91

sql2 73,833 87,058 16.07 73.66

sql3 38,963 5,136,405 92.95 71.96

sql4 21,330 10,050 46.89 86.95

msnfs1 1,467,625 41,772 87.23 99.79

msnfs2 2,100,032 121,697 66.71 88.8

msnfs3 500 24 0 99

msnfs4 4,014 338 22.52 64.79

msnfs5 3,003,205 9,624,191 97.86 96.98

msnfs6 3,040,098 9,941,612 100 97.51

Table 1. Trace decomposition into the num-

ber of writes and reads, and the percentage

of random-reads and random-writes issued.

of strong constraints (i.e., to properly evaluate our multi-

plane mode optimization) (iii) Awareness of intrinsic la-
tency variations for diverse NAND I/O operations based on

the current state of the memory cells. In addition, we built

a simulation framework that performs all of the high-level
tasks of an SSD, which builds and issues requests to concur-

rent instances of the NAND flash simulator. This provides
us with a cycle-accurate SSD simulator.

5.2. SSD Configuration and Schedulers
Tested

In this work, we configure our simulation environment as
having 8 channels, 8 flash packages per channel (64 total),

dual-die package format (128 total) and a queue size of 32,

which is the standard for SATA-based SSDs, with a page-
level mapping FTL similar to the one employed in [2, 7].

We believe this represents the typical modern SATA SSD,
but we experiment with varying queue and channel counts

in the sensitivity section to provide further insight into how

our scheme would behave under varying protocols and fu-
ture SSDs. We evaluate the following queuing strategies:

• VAQ: The default queuing scheme.

• PAQ0: PAQ, only using plane-packing.

• PAQ1: PAQ, only using clumping.

• PAQ2: PAQ, using both plane-packing and clumping.

5.3. Traces

We wanted to validate performance across a number of

traces from actual enterprise applications. To that end, we

collected traces of workloads representative of the follow-
ing enterprise areas (with the corresponding abbreviation

we use afterwards in parentheses): online transaction pro-

cessing (fin), search engines (web), shared home directo-
ries (usr), print serving (prn), relational database manage-

ment systems (sql), and remote file storage servers (msnfs).

There exist multiple traces with the same prefix but varying
numeric extensions; some of these are traces of different

points in the lifetime of the application, and others are from
distinct applications that happen to fall into the same cate-

gory. These traces are available at [3] and [1], and the latter

was originally detailed and presented in [24]. In order to
give a better insight on the high-level nature of the traces

and the overall landscape of our trace selection, we have

characterized our traces, as shown in Table 1.

6. Experimental Results

In evaluating PAQ we quantify its impact on overall per-

formance relative to VAQ by measuring total bandwidth,
I/Os per second (IOPS), and average latency for all afore-

mentioned traces. To connect those performance improve-

ments to our goal of improving parallelism and utilization,
we also measure contention time and idle time.Finally, we

demonstrate low-level impacts of PAQ through a graph of
individual request latencies and perform a sensitivity analy-

sis along the axes of queue size and channel count.

6.1. Aggregate Performance: Bandwidth,
IOPs, and Latency

As can be seen in Figure 8, PAQ improves bandwidth
for read-intensive workloads immensely; five of the twenty

workloads exceeding a 100MB/s improvement. Further-

more, for all of the web workloads, the improvement
achieved is greater than 100MB/s and such workloads are

comprised of greater than 90% of random reads (see Table
1).

Lastly, PAQ2 never hurts the performance for any work-

load, regardless of whether it is read- or write-oriented or
has mostly random or sequential requests. PAQ0 occasion-

ally hurts performance because, with a default SATA queue

size of 32, there is a limited window of requests with which
to consider packing. The IOPSmeasurements shown in Fig-

ure 9 tell the other side of our story; those traces that exhibit

particularly low bandwidth were generally dominated by
much larger numbers of requests whom had smaller sizes

than those with high bandwidth (a good example is fin2).

Just as with bandwidth, for random-read intensive work-
loads, PAQ2 does a great job improving performance and

never performs worse than VAQ. However, for our worst
performing trace, msnfs4, the IOPS are so few that they ap-

pear to be missing from the figure. In that case, despite Ta-

ble 1 describing it as mainly issuing sequential-writes, we
find that these sequential writes are intermixed with very

small random-read requests.

This write-performance degradation occurs for all sched-
ulers as a result of the great disparity between read and

write latency and these random reads undermining the par-

fin
1

fin
2

we
b1

we
b2

we
b3 us

r1
us
r2

us
r3

prn
1

prn
2

sq
l1

sq
l2

sq
l3

sq
l4

ms
nfs
1

ms
nfs
2

ms
nfs
3

ms
nfs
4

ms
nfs
5

ms
nfs
6

0.0
5.0x1041.0x1051.5x1052.0x1052.5x1053.0x1053.5x105

Ba
nd

w
id

th
 (K

B/
s) VAQ PAQ0 PAQ1

 PAQ2

Figure 8. Average bandwidth comparison between VAQ and PAQ.

fin
1

fin
2

we
b1

we
b2

we
b3 us

r1
us
r2

us
r3

prn
1

prn
2

sq
l1

sq
l2

sq
l3

sq
l4

ms
nfs
1

ms
nfs
2

ms
nfs
3

ms
nfs
4

ms
nfs
5

ms
nfs
6

0.0
4.0x101
5.0x103
1.0x104
1.5x104
2.0x104
2.5x104

IO
PS

 VAQ PAQ0 PAQ1 PAQ2

Figure 9. Average I/Os per second (IOPS) comparison between VAQ and PAQ.

fin
1

fin
2

we
b1

we
b2

we
b3 us

r1
us
r2

us
r3

prn
1

prn
2

sq
l1

sq
l2

sq
l3

sq
l4

ms
nfs
1

ms
nfs
2

ms
nfs
3

ms
nfs
4

ms
nfs
5

ms
nfs
6

0.0
3.0x106
6.0x106
9.0x106
1.2x107
1.8x108

La
te

nc
y

(n
s) VAQ PAQ0 PAQ1 PAQ2

Figure 10. Average latency comparison between VAQ and PAQ.

T

Figure 11. Idle times for VAQ and PAQ.

Figure 12. Normalized total contention time comparison between VAQ and PAQ.

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

6000

8000

10000

12000

14000

16000

18000

IO
P
S

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(a) 4 Channels

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

20000

22000

24000

26000

28000

30000

32000

34000

36000

IO
P
S

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(b) 8 Channels

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

12000

14000

16000

18000

20000

22000

24000

IO
P
S

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(c) 16 Channels

Figure 14. IOPs sensitivity to varying queue and channel sizes.

0 1000 2000 3000 4000 5000

0.0

2.0x107

4.0x107

6.0x107

8.0x107

1.0x108

1.2x108

La
te

nc
y

(n
s)

I/O Request Sequence

average
latency

(a) Latency (VAQ)

0 1000 2000 3000 4000 5000

0.0

2.0x107

4.0x107

6.0x107

8.0x107

1.0x108

1.2x108

La
te

nc
y

(n
s)

I/O Request Sequence

average
latency

(b) Latency (PAQ)

Figure 13. All latencies incurred for requests
from trace sql3 for VAQ and PAQ. Note that

average latencies are shown using a horizon-

tal line in each case.

allelism of the sequential-write requests. Even in the face

of such random-read interference, PAQ delivers 1.41 times
the IOPS and bandwidth of VAQ.

6.2. Quantifying Parallelism: Idle Time and
Contention

While raw throughput and total I/Os completed per sec-
ond are important metrics, it is still critical that individual

transactions from operations are not delayed so long that

average latency increases a great deal. Interestingly, what
we find as shown in Figure 10 is that, in the average case,

PAQ2 actually decreases latency fairly significantly. More-

over, PAQ2 improves performance in a similar proportion
across nearly all workloads, regardless of their access type

breakdown. Last, we see that while in bandwidth and IOPS
PAQ1 and PAQ2 performed very similarly, in the case of

msnfs4, using just plane-packing or clumping alone did not

improve performance as much as together, giving credence
to our belief that both are needed for best performance.

We originally conjectured that the poor performance we

observed in real SSDs in Section 3 for random reads was a
direct result of difficulty achieving parallelism in the device.

While we have demonstrated aggregate performance im-

provements using PAQ2, we further seek to directly demon-

strate that these improvements were correlated to increas-
ing utilization of the individual dies (thereby reducing idle

time) and reducing total contention time. Idle time is mea-
sured as the total time each die spent without serving any

transaction, and is shown again for each trace in Figure

11. It has been normalized to 1 so that all improvements
can be clearly seen. Decreases in total idle time for PAQ2

around 20% are witnessed on average, with a few read-

oriented traces reaching improvements as high as approx-
imately 60% and a few write-oriented traces experiencing

almost no improvements. Contention time is somewhat

harder to measure than idle time, but we formalize it as the
amount of time a NAND transaction spends waiting on the

I/O bus within a flash package to get to a specific die. As

the results in Figure 12 reflect, contention time does not di-
rectly reflect idle time. While PAQ2 does not always result

in a great reduction of idle time, it does result in a very sig-
nificant reduction in contention time across all traces.

6.3. Overheads of PAQ

As PAQ involves advanced scheduling to improve per-
formance, it is worthwhile to consider overheads schedul-

ing may cause. The process of checking the clump table de-

scribed in Section 4.5 is theoretically bounded by O(n ∗m)
for each read transfer, where n is channel count (state-of-

the-art is 4∼16) and m is flash package count (state-of-

the-art is 4∼16). This results in a search space of approxi-
mately a few thousand choices, which is inexpensive to it-

erate through. Our estimations show this overhead to be
approximately 1% (on an SSD with 72MHz microproces-

sor and 64 dual-die flash packages), which does not affect

our conclusions. Specifically, a read operation takes 180 µs
(including NAND flash I/O bus activities), and we estimate

iterating through the search space to take 1.77 µs. Further-

more, modern SSDs are using multi-core processors, which
are often underutilized and could be employed for queue

management with even less impact on performance.

6.4. Time Series: In-Depth Analysis of a
Database Trace

Next, we examine the differences in latencies between

VAQ and PAQ2 in greater detail since that was the area
of most uncertainty. For this, we focus on the sql3 trace,

and present latencies incurred for its first 5000 I/O requests

(about the first 10% of its execution) in Figure 13 for both
VAQ and PAQ. It can be observed that, while VAQ demon-

strates very consistent but moderately high latencies, PAQ

is able to decrease latencies a great deal for a majority of
the requests. However, there do exist some requests PAQ

has delayed due to their conflicting nature; in a small sub-

set of cases their response times exceed twice the latency
of VAQ. We believe this characteristic is a natural side-

effect of PAQ’s performance-enhancing optimizations, but
suggest that a balance can be struck and a bound on such

spikes set by giving priority to those requests approaching

a defined Quality-of-Service (QoS) threshold. Such exami-
nation is deferred for future work.

6.5. Sensitivity Analysis

We wanted to expose how PAQ’s performance might be

impacted by varying current protocols and flash devices

such as flash connected via not only our examined SATA
protocol, but also SAS, PCI-Express and other emerging

connecting protocols. Therefore, we performed an IOPS

and waiting time sensitivity analysis for VAQ and our PAQ
varieties on varying channel counts and queue sizes, two

parameters we believe will fluctuate the most in upcoming

devices and between different protocols respectively.
While the IOPS sensitivity analyses shown in Figure 14

demonstrates a predictable increase in IOPS as the numbers
of components increases and as queue size increases, there

are two less obvious take-aways: First, VAQ shows almost

no improvements in performance as queue size increases,
whereas all versions of PAQ demonstrate significant gains.

Since VAQ does not utilize the queue for anything but FIFO

storage, whereas PAQ utilizes the entire queue in perform-
ing its optimizations, this observation is expected. Second,

while we saw little evidence that plane-packing by itself in

the earlier results gave benefits, as we increase queue size
in this analysis we see rapidly increasing performance for

greater queue sizes. Such improvements are a result of an

increased space for the optimization to search through and
select packable blocks from.

Figure 15 illustrates an Average Waiting Time (AWT)
sensitivity test. AWT is the average time a request waits

for a spot in the device-level queue, when that queue is

full. Interestingly, in contrast to the IOPS sensitivity test,
as we increase the number of queue entries, AWT of PAQ0

slightly increases, worse than VAQ at some points. This

phenomenon occurs as a result of a delay experienced prior
to PAQ0 taking advantage of multi-plane-mode operations.

Even thoughmulti-plane-mode operations can boost system

throughput 1.53 times when compared to VAQ, it requires
data movement between the HIL and the target flash, which

preempts channel I/O bus while transferring data and there-

fore imposes a delay. PAQ2 also employs the plane packing
scheme, but, AWT of PAQ2 is better than VAQ’s. This is

because the benefits of I/O clumping covers relatively long
channel I/O bus time of plane packing. As a result, PAQ2

improves both throughput and AWT.

7. Related Work

In [28], the authors attempt to uncover a specific re-
source contention that occurs in SSDs, the areas where par-

allelism is far below optimal, and present a dynamic request

rescheduling scheme to improve performance. However, in
their work they do not take into account the fact that the

addresses which correspond to the requests they “resched-
ule” are virtual. That is, while they claim that their scheme

increases parallelism by avoiding conflict and capitalizing

on multi-plane mode in flash dies, they actually have no
knowledge of where those addresses point to since physical

addresses are not available except beneath the FTL.

[28] actually is one paper in a larger body of works that
have attempted to improve the read performance of SSDs

without grappling with the key issue we point out in our

work: the disparity between virtual and physical addresses.
Another work suffering from a similar oversimplification is

[7], where the researchers observe suboptimal access trends

in their traces and claim improvements are possible via the
coalescing of read requests. The problem here is again that

these traces are of LBAs, not of the physical addresses, and

therefore coalescing may or may not end up improving per-
formance internally within the SSD. Any improvements ob-

served are likely the result of a clean-room testing environ-
ment leading to artificial alignment of LBAs and physical

addresses; in a real installation performance improvements

may or may not result from such coalescing.
It is also critical to emphasize major differences between

flash-based SSDs and other flash mediums. As we dis-

cussed, SSDs are subjected to the very distinct nuances
of operating through traditional storage interfaces such as

SATA and SAS. Because of this, proposals aimed at opti-

mizing flash-based storage connected via PCI buses or oth-
erwise operating in a byte-addressable manner will likely

not work when such optimizations are applied to flash-

based SSDs. Therefore, while works such as [6] may appear
to tackle a similar problem to what we target, assumptions

they make, such as “the memory technology has perfor-
mance. . . to that of DRAM and that it presents a DRAM-like

interface,” pour a foundation that is entirely distinct from

the base of assumptions we work from to improve flash-
based SSDs.

In [8], the authors demonstrate that modern SSD per-

formance is less dependent upon access patterns than inter-
ferences between and within accesses and how the data is

physically laid out on the dies. They also demonstrate that

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600

A
ve

ra
ge

 w
ai

tin
g

tim
e

pe
r r

eq
ue

st
 (n

s)

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(a) 4 Channels

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600

A
ve

ra
ge

 w
ai

tin
g

tim
e

pe
r r

eq
ue

st
 (n

s)

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(b) 8 Channels

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600

A
ve

ra
ge

 w
ai

tin
g

tim
e

pe
r r

eq
ue

st
 (n

s)

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(c) 16 Channels

Figure 15. Waiting time sensitivity to varying queue and channel sizes.

write accesses are faster than for reads in some cases and

are far less dependent on access pattern and data layout than
reads are. These realizations serve as an important founda-

tion for our work. Using our PAQ scheme, we are able to
decrease the impacts of the two major performance limiting

factors they identify: interference and data layout.

In [15] and [10], the authors recognize the need to exploit
parallelism in flash-based SSDs and propose three tech-

niques for doing so over multiple independent channels:

striping, interleaving and pipelining. Other, similar strate-
gies have been presented to increase the parallelism of ac-

cesses over multiple NAND-flash packages, such as gang-

ing [2], superpaging [10], and multi-plane mode. While
these schemes are capable of achieving significant perfor-

mance improvements for higher parallelism than more se-

rial alternatives, it is important to recognize that all such
strategies only achieve parallelism for certain types ac-

cesses. As such, while they work well for writes, since

these may go anywhere and therefore achieving parallelism
is relatively easy, these schemes often fail to improve the

performance for reads since many reads do not perform ac-
cesses to strictly sequential physical addresses. We present

and quantify the shortcomings of these advanced operations

in our VAQ results, which utilizes 8 channels (superpage-
based striping), 8 flash packages-per-channel (ganging),

and 2 dies-per-package utilizing interleaved-die and multi-

plane-mode operations, and yet fails to achieve peak per-
formance. Therefore, the novelty of our work is not akin

to the previously discussed strategies, which provide com-

plex mechanisms to improve performance only for certain
access patterns. PAQ’s novelty lies mainly in reordering

and reorganizing the accesses to enable mechanisms such

as striping and ganging to perform their best.
While scheduling using physical addresses is novel

in the context of SSDs, DRAM controllers already em-
ploy physical address based scheduling. Static as well

as hardware-assisted dynamic memory access reordering

strategies [11, 21], and various other DRAM scheduling al-
gorithms [12, 27] have been investigated in order to maxi-

mize DRAM bandwidth. Zuravleff and Robinson [29] also

proposed a DRAM controller that improves data through-

put in DRAM by reordering requests coming to a memory
controller without changing the actual outcomes. Exam-

ples of QoS-aware controllers are fair-queuingmemory sys-
tems [25], stall-time fair queuing [23], and start-time fair

queuing [26]. These controllers were designed to be fair

to applications that share a limited memory bandwidth and
provide QoS guarantees if needed. With the increase in on-

chip memory controllers, the idea of coordinated control of

memory channels emerged. In [17], a method that achieves
fairness by keeping track of attained service information for

applications running simultaneously is proposed. By prior-

itizing threads with the least attained service, a fair mem-
ory scheduling scheme is obtained. In [18], fairness and

throughput are considered simultaneously. The proposed

thread cluster memory scheduling scheme isolates latency
sensitive and bandwidth sensitive applications.

These DRAM scheduling works are motivated by par-

allel memory architecture, which has similarities to mod-
ern SSDs. However, there are three important differences:

First, unlike DRAM, SSD schedulers must adhere to id-
iosyncrasies of NAND flash such as erase-before-write, en-

durance, asymmetric I/O speeds, and diverse NAND flash

command protocols. Second, SSDs are connected through
thin interfaces, which introduce more limitations in I/O

scheduling than DRAM controllers, including different lev-

els of queue management, I/O handshaking, host-device
data movement for various I/O lengths, and I/O completion

protocol. Lastly, an SSD scheduler should recognize under-

lying flash firmware features such as page- or block-level
address remapping and garbage collection. These differ-

ences in characteristics, interface nuances, and the respon-

sibilities schedulers carry out drive research on scheduling
mechanisms in each domain in separate directions.

8. Conclusion

As NAND flash-based storage devices, such as SSDs,
become increasingly considered as caching mediums for

their ability to serve random-reads at a high rate, extract-

ing full performance for such workloads is only possible if
barriers to parallelism are overcome. Our presented scheme

to improve random-read performance, PAQ, demonstrates

the need for the queuing scheduler to have access to phys-
ical addresses of requests, and we discuss how moving the

QBM beneath the FTL would achieve such. Further, we
present a conflict classification methodology, I/O clumping,

which PAQ utilizes to effect efficient and low-contention

I/O request scheduling. Lastly, PAQ uses knowledge of the
physical addresses of I/O requests to better enable multi-

plane mode commands via our plane-packing optimization.

In this work, we implemented PAQ in a cycle-accurate SSD
simulator and evaluated its performance on a diverse set

of traces taken from actual enterprise workloads. Our ex-

tensive experiments demonstrate bandwidth and IOPS im-
provements exceeding 62% and decreases in latency as far

as 41.6% on random reads when compared to the traditional

queue scheduler, without slowing writes or sequential ac-
cesses.

9. Acknowledgements

We thank our shepherd, Dr. Kai Li, for his help and care-
ful revisions in improving our paper. We also thank anony-

mous reviewers for their constructive feedback. This work

is supported in part by NSF grants 1017882, 0937949, and
0833126 and DOE grant DE-SC0002156.

References

[1] SNIA IOTTA repository.

[2] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,

J. D., MANASSE, M., AND PANIGRAHY, R. Design tradeoffs

for SSD performance. In USENIX ATC (2008).

[3] BATES, K., AND MCNUTT, B. Umass Trace Repository.

[4] BUCY, J. S., SCHINDLER, J., SCHLOSSER, S. W., AND

GANGER, G. R. The disksim simulation environment version

4.0 reference manual.

[5] CANIM, M., MIHAILA, G. A., BHATTACHARJEE, B., ROSS,

K. A., AND LANG, C. A. SSD bufferpool extensions for

database systems. Proc. VLDB Endow. (2010).

[6] CAULFIELD, A. M., DE, A., COBURN, J., MOLLOW, T. I.,

GUPTA, R. K., AND SWANSON, S. Moneta: A high-

performance storage array architecture for next-generation,

non-volatile memories. InMICRO (2010).

[7] CAULFIELD, A. M., GRUPP, L. M., AND SWANSON, S. Gor-

don: using flash memory to build fast, power-efficient clusters

for data-intensive applications. In ASPLOS (2009).

[8] CHEN, F., LEE, R., AND ZHANG, X. Essential roles of ex-

ploiting internal parallelism of flash memory based solid state

drives in high-speed data processing. In HPCA (2011).

[9] DAVIDSON, J. W., AND JINTURKAR, S. Memory access co-

alescing: a technique for eliminating redundant memory ac-

cesses. SIGPLAN Not. (1994).

[10] DIRIK, C., AND JACOB, B. The performance of PC solid-

state disks (SSDs) as a function of bandwidth, concurrency,

device architecture, and system organization. In ISCA (2009).

[11] HONG, S. I., MCKEE, S. A., SALINAS, M. H., KLENKE,

R. H., AYLOR, J. H., AND WULF, W. A. Access order and

effective bandwidth for streams on a direct rambus memory.

HPCA (1999).

[12] HUR, I., AND LIN, C. Adaptive history-based memory

schedulers for modern processors.

[13] INTEL. http://www.iometer.org/.

[14] JUNG, M., WILSON, E. H., DONOFRIO, D., SHALF, J.,

AND KANDEMIR, M. NANDFlashSim: Intrinsic latency vari-

ation aware NAND flash memory system modeling and simu-

lation at microarchitecture level. InMSST (2012).

[15] KANG, J.-U., KIM, J.-S., PARK, C., PARK, H., AND LEE,

J. A multi-channel architecture for high-performance NAND

flash-based storage system.

[16] KGIL, T., ROBERTS, D., AND MUDGE, T. Improving

NAND flash based disk caches. In ISCA (2008).

[17] KIM, Y., HAN, D., MUTLU, O., AND HARCHOL-BALTER,

M. Atlas: A scalable and high-performance scheduling algo-

rithm for multiple memory controllers. In HPCA (2010).

[18] KIM, Y., PAPAMICHAEL, M., MUTLU, O., AND

HARCHOL-BALTER, M. Thread cluster memory scheduling:

Exploiting differences in memory access behavior. InMICRO

(2010).

[19] KIM, Y., TAURAS, B., GUPTA, A., AND URGAONKAR,

B. Flashsim: A simulator for NAND flash-based solid-state

drives. In SIMUL (2009).

[20] LIU, Y., HUANG, J., XIE, C., AND CAO, Q. Raf: A ran-

dom access first cache management to improve SSD-based

disk cache. NAS (2010).

[21] MCKEE, S., AND WULF, W. Access ordering and memory-

conscious cache utilization. HPCA (1995).

[22] MICRON, INC. MT29F8G08MAAWC.

[23] MUTLU, O., AND MOSCIBRODA, T. Stall-time fair memory

access scheduling for chip multiprocessors. InMICRO (2007).

[24] NARAYANAN, D., THERESKA, E., DONNELLY, A., EL-

NIKETY, S., AND ROWSTRON, A. Migrating server storage

to ssds: analysis of tradeoffs. In EuroSys (2009).

[25] NESBIT, K. J., AGGARWAL, N., LAUDON, J., AND SMITH,

J. E. Fair queuing memory systems. InMICRO (2006).

[26] RAFIQUE, N., LIM, W.-T., AND THOTTETHODI, M. Ef-

fective management of DRAM bandwidth in multicore pro-

cessors. In PACT (2007).

[27] RIXNER, S., DALLY, W. J., KAPASI, U. J., MATTSON, P.,

AND OWENS, J. D. Memory access scheduling. In ISCA

(2000).

[28] YEONG PARK, S., SEO, E., SHIN, J.-Y., MAENG, S., AND

LEE, J. Exploiting internal parallelism of flash-based ssds.

IEEE CAL. (2010).

[29] ZURAVLEFF, W. K., AND ROBINSON, T. Controller for a

synchronous DRAM that maximizes throughput by allowing

memory requests and commands to be issued out of order.

U.S. Patent No: 5,630,096 (1997).

