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Before We Begin: Get the Slides and Paper

Slides and Paper are Available At:

www.ellisv3.com
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The Present and Future of Flash

Well-Known Flash Dynamics

SLC: Fast, Long Life, Small Size

MLC: Medium, Medium Life, Medium Size

TLC: Slow, Short Lived, Large Size

Cells are getting smaller (i.e., slower, shorter-lived)!

Future Flash: As consumers push towards higher-capacity and
SSDs slowly replace HDDs, longevity will return to the forefront of
the discussion
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Leveraging the Little-Known

A Little-Known Flash Fact

SLC, MLC, and TLC are solely logical differentiations

Same underlying NAND material!

Our Question: Given impending longevity concerns and increasing
NAND diversity, can we develop a scheme that will increase
longevity without sacrificing manufacturer longevity guarantees or
performance?
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Proof-Of-Concept on Real Hardware

SSD A (MLC):
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SSD B (MLC):
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Take-away: Potential! But this (write all pages, erase, repeat) is an
extremely simplified scenario.
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Problem Statement

How Best to Leverage This Trick?

Sounds Simple: Just transition a block down a bit-level when
it approaches death

Open Problems Targetted:

Upon bit-switch, how long will the new MLC (or SLC) block
survive?

Can we do a double-death?

How much does ZombieNAND extend lifetime?

Do current-gen algorithms (e.g., wear-leveling) work with this?

What is the impact on performance (before and after rebirth)?

Don’t break any manufacturer guarantees!
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High-Fidelity Longevity Simulation
Wear-Leveling

Simulation Framework

Existing Simulators Fall Short

Existing simulators use simple block counters

Works when bit-levels remain constant, but when you
switch. . .

Extending DiskSim

Add a physics-accurate stress model

Add support to existing mechanics (e.g., garbage collection)
to handle varying bit-levels blocks
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ZombieNAND Oxide Stress Model

1: procedure calc stress(cycle)
2: A← 0.08
3: B ← 5.0
4: Cox ← 2.15e−17

5: q ← 1.6e−19

6: δNit ← A ∗ cycle0.62

7: δNot ← B ∗ cycle0.30

8: δVit ← (δNit ∗ q)/Cox
9: δVot ← (δNot ∗ q)/Cox

10: return (δVit + δVot)
11: end procedure

Conservative estimate: We ignore charge leakage (cell recovery)
due to manufacturing variability
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Limitations of Existing Wear-Leveling

Existing Wear-Leveling Algorithms Overdo It

Early experiments with adapted DiskSim demonstrate limited
improvements

Problem: We actually don’t want all of the cells to switch
simultaneously

Solution: Controlled Wear-Unleveling for Lifetime

Early Blocks ≤ (R −W )× B

2S−2
(1)

R=reserved percentage, W=high-watermark percentage,
B=number of blocks per element, S=starting bit-level

See the paper for the rest of the wear-leveling and GC algorithms

ellis (www.ellisv3.com) ZombieNAND



Motivation
Simulation

Results

Setup
Synthetic
Trace-Driven

Experimental Setup: Timings

Fixed access latencies and lifetime by bit-level:

Access Type (unit) SLC (2KB) MLC (4KB) TLC (8KB)
Read (page) 0.025 ms 0.05 ms 0.15 ms
Write (page) 0.2 ms 0.5 ms 1.0 ms
Erase (block) 1.5 ms 1.5 ms 3.0 ms

Lifetime (cycle) 75,000 6,000 1,000

Derived from specification documents from Micron. Fixed access
latencies are not reasonable for small studies, but for lifetime

studies they work fine.
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Experimental Setup: SSD Configuration

Key experimental SSD configurations.

Synthetic Trace-Driven
Flash Chips 1 4

Blocks per Element 128 512
Planes per Element 8 8

Blocks per Plane 16 64
Pages per Block 128 128

Yes, these are “small” configurations (128MB and 1GB SSD sizes)
relative to modern drives (often 128GB to 1TB) due to raw

duration of simulation.
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Synthetic TLC Results: 50% Read/Write Ratio

Normalized Lifetime
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Normalized Latency
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Take-aways: 1) All lifetimes are at least as long as the baseline. 2) Latency

degradations occur largely after death of baseline. 3) Large lifetime gains (up to 16x)

are not unreasonable due to huge differences in TLC/MLC/SLC P/E cycles; latency

gains are accordingly less drastic. 4) Other R/W ratios follow same trend (see paper).
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Trace-Driven TLC Simulation Lifetime Results
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Take-aways: 1) Still assuring in the worst case we match baseline. 2) Lifetime

improvements vary widely across applications. 3) Efficacy has a strong correlation to

address reuse of writes (see paper for details).
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Trace-Driven TLC Simulation Latency Changes Over Lifetime

For TLC, 20% Reserved Scenario (see paper for rest)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0  20  40  60  80  100  120  140  160  180  200

Baseline Death

L
a
te

n
c
y
 R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

Take-aways: 1) Match or exceed performance up until last 5% of baseline life. 2) Some

traces get even better after baseline death, some get far worse – desirable compared to

complete death. 3) Spill-over accesses drive performance loss in post-baseline area.
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Questions?
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