
ZombieNAND: Resurrecting Dead NAND Flash for
Improved SSD Longevity

Ellis Wilson∗, Myoungsoo Jung †, Mahmut T. Kandemir∗

∗Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802
Email: {ellis,kandemir}@cse.psu.edu

†Department of Electrical Engineering
The University of Texas at Dallas

Richardson, TX 75080
Email: jung@utdallas.edu

Abstract—As consumer pressure for more bits per dollar and
higher density-per-solid-state disk (SSD) forces manufacturers
to squeeze more than one bit per flash cell and feature sizes
downwards, wear-out is again becoming an increasing concern.
Specifically, while single-level cell flash at larger feature sizes used
to boast over 100,000 program/erase (P/E) cycles, modern triple-
level cell flash can only sustain a measly 3,000 P/E cycles before
it can no longer be reliably used. However, one lesser known
facet of NAND flash design is that there is no material difference
between cells that store one, two, or three bits per cell – it is
merely a logical interpretation of the cells contents.

Therefore, in this work we leverage this interesting property
to explore how resurrecting dead flash cells to create “Zombie-
NAND” flash can improve an SSD’s lifetime, and what, if any,
impact on latency results in doing such. Specifically, we analyze
the impact of switching a TLC or MLC cell down one bit
upon death; this allows the voltage thresholds to rise and life,
though at a lower capacity, to continue for that cell. Finding that
traditional wear-leveling techniques actually inhibit the benefits
of this scheme, we propose and explore how controlled “wear-
unleveling” can work in tandem with Zombie-NAND cells to
provide vastly increased life and decreased latencies for the
drive. In this exploration, we perform rigorous performance
measurement over a number of parameters representative of a
variety of commodity and commercial SSDs.

I. INTRODUCTION

Today, NAND-flash-based Solid State Drives (SSDs) are
well-known and well-used in both commodity and commercial
spaces. They bring to bear latencies and bandwidths far supe-
rior to traditional Hard-Disk Drives (HDDs), which helps to
lessen the otherwise vast gap between main memory latencies
and HDDs. Unfortunately, while SSDs have made great strides
in the recent past, they still suffer from wear-out characteristics
of the underlying NAND flash material.

Specifically, NAND flash is only able to handle a certain
number of Program and Erase (P/E) cycles before a signal
can no longer be stored stably. This issue is exacerbated
by the reality that, to enable increased data density at a
given feature size, techniques have been developed to store
two, three, and even more bits into a single NAND flash
cell, leading to major reductions in the threshold at which
that cell must be declared “dead.” [1], [2] Furthermore, new
material science has led to reductions in the very size of such
cells, which also impacts their ability to reliably retain data.
[2] Because of these issues, as NAND-flash-based SSDs are
used and age, their performance degrades as cells become
harder to program reliably, and some cells die altogether and
must be worked around. There are a number of works that
have attempted to cope with these wear-out problems via

techniques such as improved garabage collection to reduce
write-amplification (the increased impact of a single write due
to garbage collection), which we elaborate on in Section V.

However, in this work, rather than proposing another tech-
nique to reduce write-amplification or avoid temporary writes
ever making it to the flash, we seek an entirely “unnatural”
solution to the problem: we allow the cells to die a normal
death, and subsequently bring them back from the dead, which
we call zombified NAND-flash-cells. More specifically, upon
the death of a cell, the point at which it can no longer reliably
store two or three bits, we propose an algorithm that reduces
the bit-capacity of a given cell by one. This has the curious
side-effect of increasing the read, write, and erase speeds
of a zombified flash-cell, and, on the whole, in many cases
gradually improves the performance of the drive as it ages.
To fully leverage these effects, we propose a novel adaptation
to existing wear-leveling and garbage collection that greatly
increases the potency of the ZombieNAND technique.

Nevertheless, there seems to be one major drawback to
zombifying your NAND-flash cells: one bit of capacity is lost
upon every transition to a lower bit-state. However, we argue
that, since we are waiting until the cell dies to transition, the
only alternative is to let the cell die and sit dormant, as it
does now, which would lose you two or three bits for MLC
or TLC cells, respectively. So, we prefer to think of it as one
or two bits are gained relative to complete death – our results
demonstrate this to be the case with vastly increased drive
lifetimes compared to traditional SSDs.

It is critical to note and understand why we, in absolutely
no case, convert some of the flash to a lower state prior to their
natural death. Manufacturers aggressively compete regarding
how many P/E cycles their flash promises prior to death, and
therefore, are extremely unlikely to implement any strategy
that jeopardizes those guarantees. Therefore, towards the goal
of developing a novel lifetime-extending scheme that can be
implemented in the real-world, we make sure never to convert
a cell until it has fully worn-out at that bit-level.

Before we begin, we need to motivate that this “zombifi-
cation” is indeed achievable in real NAND-flash. Therefore,
we performed and present results from an initial evaluation on
two raw MLC NAND devices from distinct manufacturers in
Figure 1. Therein we plot latency to write the least-significant
bit (LSB) and the most-significant bit (MSB), the two bits
in an MLC cell, over their lifetime. Latency shown is to
write all LSBs or MSBs in a page, the lowest granularity
of writes that can be performed. We continue the process
by writing LSB and then MSB for all pages in a block, and

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

400
600
800
1000
1200
1400
1600
1800
2000
2200
2400

La
te

nc
y

(u
s)

P/E cycle

 LSB
 MSB
 Typical

Transition Occurrence

(a) MLC NAND Flash Drive A

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200

La
te

nc
y

(u
s)

P/E cycle

 LSB
 MSB
 TypicalTransition Occurrence

(b) MLC NAND Flash Drive B

Fig. 1: Proof-of-concept: Zombification process of NAND flash in two manufacturer’s raw flash chips, demonstrating longer life
and improved latency. Latency is shown to write all LSBs or MSBs in a page, and this process of writing all LSBs and then all
MSBs in each page, for all pages in a block, and then erasing the block, are shown up until the block is declared dead. Typical
latency is the average of the two.

then perform an erase on that block. This process is repeated
until the block throws errors as demarcated with the vertical
dotted line, at which point we transition from MLC to SLC
and solely write to the LSB going forward. As can be seen,
the cells continue to function in SLC-mode post-transition
from approximately 3,000 Program/Erase (P/E) cycles all the
way to in excess of 100,000 P/E cycles, and further, post-
transition average latencies inherit the lower latencies of SLC
NAND-flash. Programming the MSB is naturally slower than
for the LSB because more discrete analog ranges need to be
programmed carefully; the LSB only has two, whereas the
MSB has four. Last, we believe latencies slightly improve over
their lifetime due to trapped charges making the programming
easier. Eventually this kills the cell, but in the short term it
improves programming latencies.

However, manual transition of cells in this way is only a
proof-of-concept – not a production-ready contribution. There-
fore, to master the art of auto-zombification and management
of zombie versus living NAND cells, we present the major
contributions of this paper:

• Physics-Accurate SSD Simulator: We need to simu-
late much of the functionality of a flash-based SSD’s
flash translation layer (FTL), but, with the fidelity of
a physics-based flash cell simulator because block-
erase counters simply do not suffice (we do not know
how much is really left post-transition). Therefore,
we made extensive changes to a popularly used SSD
simulator to enable it to perform physics-accurate
transitions between bit-states. This is, to the best of
our knowledge, the first work to enable accurate sim-
ulation of the entire lifetime of an SSD from prestine
state to its death, which we leverage extensively in our
exploration of the ZombieNAND technique.

• Controlled Wear-Unleveling: We find that traditional
wear-leveling results in too great a number of the cells
dying at around the same time, limiting the impact of
zombification. Therefore, we develop a novel wear-
leveling mechanism that is both simple and effective
at achieving a controlled degree of wear-unleveling
such that a configurable number of cells transition (die
and become zombies) earlier than the rest, which often
improves the lifetime and the performance of the drive

on the whole in advanced ages.

• Industry-Relevant Results: Changing the bit state
sacrifices capacity and therefore has potential to cause
the drive to use all reserved space and die earlier
than as promised by the manufacturer. To avoid this
and assure our results are industry-relevant, we set an
invariant that we never may transition a cell to a lower
bit-state unless it has reached the promised number
of erases by the manufacturer. Further, by prioritizing
simple but effective adaptations to existing garbage-
collection and wear-leveling techniques over complex
and fragile algorithms, we argue ZombieNAND can be
implemented with only a modicum of difficulty across
a wide variety of existing FTLs.

• Expansive Environment Evaluation: We witness a
broad spectrum of performance and lifetime impacts
based on varying environment conditions such as:
proportion of reserved space, workload read to write
ratios, working set size relative to reserved space
size, and starting at MLC versus TLC. Therefore, in
our evaluation, we use our simulator to perform an
expansive search over all such environment conditions
from prestine state to death of the SSD to provide
conclusive evidence to when zombification can bring
large benefits and when it cannot.

In this work we explore our ZombieNAND technique using
both synthetic workloads and real traces. We demonstrate
that ZombieNAND never hurts the lifetime of the SSD when
compared against an SSD without it for over five-hundred
different synthetic experiments and over sixty trace-driven
runs. For workloads and configurations where it does help,
which are the majority of the results presented, for TLC drives
it can extend the lifetime from 20% to over 11 times for traces,
and as high as 16 times for fully random synthetic I/O. For
MLC drives this lifetime extension ranges from 73% to 375%,
and reaches 325% in synthetic tests. Additionally, we provide
time-series analysis demonstrating that ZombieNAND never
degrades average latency compared to a vanilla drive during
the lifetime of the vanilla drive. While average latency does,
under some workloads, degrade somewhat after the death of
the vanilla drive, a bit slower is much preferable to dead, and
for around half of the traces latency is instead reduced by

M
ic

ro
p

ro
ce

ss
o

r

CH A

Flash Chip Flash Chip

CH B

Flash Chip Flash Chip

CH C

Flash Chip Flash Chip

CH D

Flash Chip Flash Chip

Channel

H
o

st
 I

n
te

fa
c
e

Way

NAND Flash

Memory Array

DATA REGISTER

CACHE REGISTER

1 Block

NAND Flash

Memory Array

DATA REGISTER

CACHE REGISTER

N
A

N
D

 F
la

sh
 I

n
te

rf
a

c
e DIE 0

DIE 1

DIE 2

DIE 3

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

(Plane)

1 Block

wordline

SSD Internals NAND Flash Package Internals

Fig. 2: Typical SSD Architecture

typically around 20% to 25%, and can reduce as much as 50%
(even post-death) for TLC. MLC results demonstrate typical
latency improvements from about 10% to 25% for half of the
workloads, and can be as low as 40% reduced.

II. BACKGROUND

To facilitate an informed vantage point for our work, we
provide background starting at a high level for flash-based
SSDs and drilling down. We first describe SSD architecture
and some of the key parameters and mechanisms we explore
in this work, and then move into the actual NAND flash itself.
Having given a basic overview of the mechanisms in NAND
flash, we last highlight some of the physics of NAND wear-
out characteristics, which we leverage towards high-fidelity
simulation of bit-switching for “undead” flash.

A. SSD Architecture

NAND-flash-based SSDs are highly parallel in nature, as
shown in Figure 2. Each SSD is connected to the host typically
by SATA, SAS, or PCIe interfaces, and multiple channels
within connect the interface to groups of NAND packages.
Within each package there exist one or more dies, and within
each die there are often one or more planes, which require
specialized data access modes to take full advantage of their
parallelism. In total, this makes for an architecture where
hundreds of individually small, low-bandwidth, flash storage
areas all work in tandem to provide larger capacities, low
latencies, and high bandwidth.

Managing that architecture towards optimal performance
and importantly, effective wear-leveling, is a complex task
that is the duty of the flash translation layer (FTL). This FTL
performs duties including, but by no means limited to, address
translation (between the host and the physical addresses), bad
block management, wear-leveling, a variety of performance
optimizations, and garbage collection. In this work the FTL
plays a crucial role in allowing “undead” flash to not only
clamber along after death, but also to acknowledge that these
cells store a smaller capacity, and to utilize their special
properties of being faster and longer-lived to extend the life
and improve performance of the drive on the whole.

B. NAND Flash Overview

Moving down to analysis of the NAND flash material itself,
at the level of an individual cell NAND is made up of floating-
gate transistors. These transistors are capable of storing data
for extended periods of time relative to DRAM and other
temporary memory solutions, but have the side-effect that, in
order to write over a previously written section, they must first
be discharged (hereafter referred to as “erased”). For the most
basic NAND flash cells, single-level cells (SLC), the floating-
gate either has a high threshold voltage (Vt), which demarcates
that the cell is erased and is a “1,” or it has a low Vt, indicating
it has been written and is “0.” For increased bit counts, more

voltage levels are added to indicate the increased number of
bits, which divides the entire voltage range into 2n distinct
voltage levels for an n-bit flash cell.

C. The Physics of Cell Wear-Out

There are countless interesting and nuanced properties of
NAND flash cells, but the critical ones for this work revolve
around their physical properties relating to wearing-out. As
mentioned, NAND flash suffers from wear-out due to the
impact of the P/E cycle. This is specifically due to the charging
process resulting in electrons getting “stuck” in the interface
and oxide layers of the floating-gate transistor. As more and
more electrons accumulate there, at some point Vt exceeds the
margin between distinct voltage levels and therefore discerning
between one level or the other becomes impossible. However,
as is to be expected, this collection is not purely monotonic –
after some time charge can “leak” out from the oxide, returning
a cell from a dead state to a usable state again.

This process of electron trapping and leakage has been
extensively studied and modelled in [3], [4], and [5], which we
incorporate into this work. This level of high-fidelity wear-out
simulation is required in this work because we need to know,
if we switch from some higher bit-mode to a lower one, what
“life” yet remains in the cells. Since switching is merely a
logical interpretation, we retain the trapped voltage at a per-
block granularity, which will not change on bit-switch, and
reference a higher threshold relative to the current bit-mode.

Algorithm 1 Oxide Stress Model Psuedocode
1: procedure CALC STRESS(cycles)
2: A← 0.08
3: B ← 5.0
4: Cox← 2.15e−17

5: q ← 1.6e−19

6: δNit ← A ∗ cycles0.62
7: δNot ← B ∗ cycles0.30
8: δVit ← (δNit ∗ q)/Cox
9: δVot ← (δNot ∗ q)/Cox

10: return (δVit + δVot)
11: end procedure

Pseudocode for our oxide stress model, most closely track-
ing the model as presented in [3], is shown in Figure 1.
The input cycles is simply the number of P/E cycles already
performed on the block, A and B are constants derived in the
mentioned work, and q is electron charge in Coulombs. As [3]
failed to specify the value for Cox, which is the capacitance
of the oxide, we were forced to re-calculate it by fitting to
their graphs and validating against our evaluation on actual
flash as shown in Figure 1. δNit and δNot represent densities
of traps forming in the oxide, respectively, interface traps and
bulk traps. Correspondingly, δVit and δVot are the interface
and bulk trap voltage shifts, which add together towards the
total trapped voltage in the block following the erase of δVt.1

III. WEAR-UNLEVELING FOR LIFETIME

A. The Basics of Wear-Leveling

Modern SSDs tout all forms of complex garbage-collection
and wear-leveling algorithms to assure the cells within wear-

1In private discussions with industry professionals we ascertained that, while
this stress model roughly captures the effects of P/E cycles in modern NAND
flash, recovery characteristics due to charge leakage from the oxide layers
are far less consistent between manufacturers and feature sizes, and therefore
difficult to predict. Therefore, to present the most conservative estimates of
lifetime-enhancement, we assume zero recovery is possible.

down at roughly the same rate throughout the many planes,
dies, packages, and channels within. In doing this traditional
SSDs, which simply mark cells as dead when they are no
longer reliable in storing the bit-count they were designed
for, do an excellent job at reaching near-optimal life. Optimal
lifespan for a traditional SSD can be defined as “using all of
the flash medium in such a uniform manner that when a cell
finally is erased and declared dead, all of the remaining cells
are also one erase from death themselves.” In short, if all the
flash dies at nearly the same time, the most use was gotten
out of the pool of flash as is possible. To fully appreciate this
consider a sub-optimal alternative, where half of the flash in the
SSD is on the verge of death and the half has been completely
unused thus far. If that near-dead half continues to be used and
dies off, the drive will report itself as wholly dead when the
amount of dead flash exceeds the reserved amount (often in
the range of 5% to 30% extra flash). So, in this simplified case,
only half of the drive’s life has been expended even though it
has reported itself as entirely dead to the operating system.

Wear-leveling functionality tends to be concentrated around
the garbage-collection process as that is where erases largely
occur, and erases have the most negative impact on cell
lifetime. In a simple garbage collection process, once it begins
on a given package it does not stop cleaning until a high-
watermark is reached. At a high-level, first a usage table is
retrieved, which organizes all the blocks in the package into
buckets based on the number of valid pages within. A page is
considered valid if a logical address still points to it – upon
an erase and/or rewrite of that logical address, the block is
simply marked as “invalid,” it is not necessarily immediately
erased in physical terms. The highest priority bucket contains
blocks whom have no valid pages within (and therefore no
data will need to be read and written out somewhere else),
and the lowest priority bucket has blocks with only one invalid
page. Blocks without any invalid pages are not considered, as
erasing and moving these does nothing but damage and slow
the drive. By prioritizing erasure of blocks with large numbers
of invalid pages, a smaller amount of data needs to be read out
of these blocks, coalesced, and written back into other blocks
(also known as write amplification).

This results in higher-performance garbage collection and
lower write amplification, but without other protections does
nothing to assure real wear-leveling is being achieved. There-
fore, as the garbage collector works through the high-priority
buckets, it also considers the number of times a given block
has been erased in comparison to the average erase count
of the entire package. If that block exceeds the average by
a predefined threshold, we consider it to be overused and
skip past it to another block with less erases. Again, this is
a simplified garbage-collection and wear-leveling strategy –
deciding which blocks to erase, which to skip past, how write-
amplification should be balanced against over-worn blocks,
and the like have all been studied at length in numerous
other works. Moreover, with few exceptions, our proposed
changes to this simplified wear-leveling mechanism as follows
is sufficiently simple such that it should be orthogonally
applicable to a broad base of the many garbage collectors and
wear-leveling algorithms currently in the wild.

B. The Early Switching Pool

In this work a simplified wear-leveling strategy not only
suffices to explore our methodology, but was found in early
experiments to be overly effective. Put succinctly, when you
give up the requirement that “a cell dies when it is no longer
able to reliably store a predefined set of bits,” and instead

allow that cell to repurpose itself to a lower bit-count as we
do, you no longer want your entire drive to reach a near-dead
state at the same time. If such occurs, transitioning down to a
lower-bit count results in only a dead drive. If an MLC drive
wholly transitions to SLC, unless the reserved area is greater
than 50% of the drive (unlikely for cost reasons), the drive will
be forced to report itself as dead. The same property applies
to TLC, although the subsequent transition to SLC means an
even greater reserved area would be needed to protect against
whole drive transition without the drive announcing its death.

Therefore, we propose a simple but, as we will later
demonstrate, highly effective adaptation to the above wear-
leveling strategy that “wear-unlevels” a predefined fraction of
the drive in a controlled manner without sacrificing any of
the manufacturer’s guarantees about drive lifetime as shown
in Algorithms 2 and 3. Further, we define a pool of “early
switch” blocks in each and every flash die as the following:

Early Blocks ≤ (R−W)×B
2S−2

(1)

Here R is the reserved percentage, W is the high-
watermark percentage (when GC stops), B is the number of
blocks per element, and last S is the starting bit-level of the
blocks (we do make the assumption that all blocks in the SSD
start at the same bit-level). All percentages refer to the entire
drive size, and are expressed as integers, not decimals. Further,
R is assumed to be always greater than W (otherwise you
may be unable to perform GC when you run out of reserved
area on a full drive). The high-water free blocks (where free
means erased completely and not yet written) percentage is
first removed from the pool of reserved blocks as we consider
a drive dead if it exceeds this amount of dead blocks. The
remaining percentage is then multiplied by the blocks per
element to get our pool of blocks which can die without the
element dying entirely, which we last divide by a power of
two dependent upon the number of bits started with. This final
term, which boils down to simply dividing by two if started
as TLC, was decided upon after testing turning the entirety of
that extra space into “early switch” cells. Because TLC (when
compared against MLC) has a very low erase count prior to
death, but a higher capacity after death and transition, getting
a the early switch blocks to transition sooner is critical, and
therefore concentrating accesses on a smaller early switch pool
is the easiest way to achieve this.

Our wear-unleveling methodology as described in Algo-
rithms 2 and 3 follow much of the same paths as the standard
wear-leveling algorithm, with a two notable points to make:
First, although unshown, whenever an erase is performed, if
the block is discovered to be dead (in our simulator, indicated
by having trapped charges exceeding specified thresholds),
it is always transitioned down one bit (dead SLC can go
no further and therefore is simply marked dead). Thresholds
correspondingly raise on this action, and, provided the reserved
capacity of the drive has not fallen below the high-watermark
percentage, the block can live on to die another day. Second,
in creating our usage table buckets, number of valid pages
is still the most important property considered in sorting.
Simply being an early-switcher does not allow a block to
get into a higher priority bucket – write amplification due
to increased valid pages would over-ride potential benefits.
However, if an early-switch block and a normal block are
both in the same valid-pages bucket, the early-switch block
will always be chosen, and thus the early-switch property is
the second most important propery to sort upon. So, although

Algorithm 2 Usage Table Construction
1: procedure BUILD USAGE TABLE(element)
2: table← MALLOC TABLE
3: for i← 0, params.blocks per element do
4: usage← metadata.block usage[i].num valid
5: table[usage].len++
6: end for
7: buckets← MALLOC BUCKETS(table)
8: for i← 0, params.blocks per element do
9: usage← metadata.block usage[i].num valid

10: buckets[usage][table[usage].tmp].num← i
11: buckets[usage][table[usage].tmp++].rem life ←

CALC LIFE REMAINING(element, i)
12: end for
13: for i← 0, params.pages per block − 1 do
14: QSORT(buckets[i], table[i].len, comp life earlyswitch)
15: for j ← 0, table[i].len do
16: table[i].block[j]← buckets[i][j].num
17: end for
18: end for
19: end procedure

Algorithm 3 GC with Controlled Wear-Unleveling
1: procedure CLEAN BLOCKS(element)
2: avg life← COMPUTE AVG LIFE(element)
3: usage table← BUILD USAGE TABLE(element)
4: for i← 0, params.pages per block − 1 do
5: current table← usage table[i]
6: for j ← 0, current table.length do
7: blk ← current table.block[j]
8: rem life← CALC LIFE REMAINING(element, blk)
9: if rem life < (LIFE THRESHOLD ∗ avg life)

then
10: if NOT EARLY SWITCH(blk) then
11: continue
12: end if
13: end if
14: CLEAN BLOCK(blk, element)
15: if DONE CLEANING(element) then
16: break
17: end if
18: end for
19: if DONE CLEANING(element) then
20: break
21: end if
22: end for
23: end procedure

early-switch blocks are not wear-leveled against normal blocks
(and importantly, vice-versa), early-switch blocks are wear-
leveled amongst themselves.

IV. EVALUATION

A. Simulation Framework

In order to evaluate the ZombieNAND algorithm as just
described, we needed to first build a simulator capable of
returning physically-accurate results for long-running simula-
tions. DiskSim [6], a widely known and used magnetic disk
simulator, has been extended for simulation of idealized SSDs
by Microsoft Research [7]. As ZombieNAND concentrates
on extending the overall lifetime of the SSD, we deemed
it reasonably acceptable to use an idealized SSD simulation
framework rather than something higher fidelity on the short-

term but much more computationally expensive. However, this
extension fell quite short of our needs as it only used block-
counter style of lifetime estimation. Because we are switching
the logical interpretation of a cell when it reaches death in
its current state, it is not, for example, acceptable to simply
deduct 3,000 P/E cycles that were used when in TLC state from
the subsequent MLC state. This would result in 27,000 cycles
remaining in MLC, and would significantly overestimate the
remaining lifetime for the drives.

Therefore, after carefully reviewing works as discussed in
Section II, [3], [4], and [5], we incorporated their findings
into a new, physically-aware lifetime calculation sub-system
within the DiskSim SSD Extension. This was the first and
major hurdle in the road towards a simulator that would
provide physically-accurate results for ZombieNAND. Second,
we had to incorporate the notion of different page sizes in
the simulator. Because DiskSim (and the extension) were built
on the premise of single size sectors and pages, we had to
carefully add features to the existing functionalities to enable
them to cope with potentially two or three different page sizes
(in the case of MLC or TLC, respectively). Last, although
DiskSim is well known and used, it is also somewhat dated
for modern 64-bit machines and to our knowledge has never
been used for very long-running experiments. Specifically, to
properly evaluate ZombieNAND, we needed to start with a
fully pristine SSD, and continue issuing operations to it until it
declared itself completely dead. This process would often take
as long as a week on a single machine and would ultimately
have issued dozens of billions of operations at the SSD over its
lifetime. However, we found many of the variables and data
structures in place failed to scale to handle these durations
and raw volumes of commands. This resulted in a number
of segmentation faults and less obvious bugs until we finally
adapted all of the underlying code to handle long-running
simulations like ours.

B. Experimental Setup

In evaluating ZombieNAND, we note the following con-
figuration choices as shown in Tables I and II. Five additional
points are worth noting to fully understand the following
experimental results: First, for the synthetic experiments we
simulate an SSD with a single, reasonably small NAND flash
element inside because we sought to explore a large search-
space of parameters (which would be intractable at larger sizes
and counts of elements). Second, in the case of the trace-driven
experiments, we move to a larger, multi-element SSD sized at
1 Gigabyte, but cannot scale to modern sizes (128GB-1TB)
because again, we are simulating the entire lifetime of the
SSD. Even at 1GB, simulations take multiple days on modern
machines, and DiskSim was not designed to scale up for HPC-
style simulation (because of the large code-base, adapting it
for such would be a massive undertaking). Nevertheless, we
argue that our results should scale to larger sized SSDs for
synthetic and trace-driven experiments so long as reserve area
percentages, which we find to be the most dominant parameter,
stay the same. Third, all of these experiments assume a SATA
300 interface (and corresponding block transfer times are
used). Fourth, garbage collection, which has been explained
to be a critical component of ZombieNAND, kicks in at a
predefined minimum percentage of blocks free and runs in
the background until a high-watermark percentage of blocks
are available again. In all of our experiments, we use 2%
and 5% for these values, respectively. Last, while we use a
physics-based engine we developed based on models in prior
works to determine lifetime remaining for a given flash cell,

Access Type (unit) SLC (2KB) MLC (4KB) TLC (8KB)
Read (page) 0.025 ms 0.05 ms 0.15 ms
Write (page) 0.2 ms 0.5 ms 1.0 ms
Erase (block) 1.5 ms 1.5 ms 3.0 ms

TABLE I: Access latencies based on operation type (unit
operation works on is shown in parentheses) and NAND bit-
level. NAND bit-level headers are shown with size of a page
in parentheses.

Synthetic Trace-Driven
Flash Chips 1 4

Blocks per Element 128 512
Planes per Element 8 8
Blocks per Plane 16 64
Pages per Block 128 128

TABLE II: Key experimental configurations of the simulated
SSD for synthetic and trace-driven tests.

the parameters within have been tuned to correspond to state-
of-the-art manufacturer guarantees. Specifically, we have tuned
the physics engine to declare an unswitching SLC-, MLC-, and
TLC-based block dead at roughly 75,000, 6,000, and 1,000
P/E cycles, respectively. These values were gathered from a
broad survey we performed of recently-released SSDs in the
various categories and manufacturer specifications associated
with them, and the timings shown in Table I were drawn from
specification sheets [8], [9], and [10].

C. Synthetic Results

In this set of experiments we use a synthetic access gen-
erator we built that takes two parameters, read-to-write ratio
and working-set size, and test it across a number of different
reserved area configurations of the SSD. This synthetic access
generator simply generates a random workload across the spec-
ified working-set size, and continues issuing random accesses
as fast as the SSD can handle until the drive dies. Read-
to-write ratio simply defines the probability the randomly
generated access will be a read or a write. Working-set size
defines how large of an address space the synthetic generator
can randomly choose an access to occur on. For example, since
we are using a single element in these experiments, 64MB in
size, in the cases of 50% working set size, addresses starting
at zero and going up to 32MB of the drive can all be issued
to. Last, it is perhaps most important to understand specifically
what we mean by reserved area. In all of our synthetic and
trace-driven results, reserve area denotes the percentage of the
total state size deducted from the user-visible SSD space. So,
unlike its common use, in our 1GB SSD evaluation, whether
we are using a reserved area of 10% or 30%, the total flash in
the SSD is still 1GB – the only thing changing is the accessible
logical address space to the application. This is a critical point
because we did not want to confound our results by having
added more reserved area to a base amount of flash; fixing the
total raw flash available keeps all of the configurations on an
even playing field.

Results from over five-hundred distinct experiments we
performed to cover variations on these three key dimensions
for both TLC and MLC are shown in Figure 3. These heat-
maps depict life and latency changes relative to an unswitching
execution with the exact same parameters, which we hereafter
refer to as the baseline. The baseline is normalized to 1.0
for both latency and lifetime plots, and in the lifetime cases,
all experiments do as least as well as the baseline (a design

goal). The latency results depict latency average over the entire
lifetime of the SSD, so it is important to remember in the
ZombieNAND case the lifetime is always greater than or equal
to the baseline. Therefore, even though sometimes the latencies
are worse than the baseline average, these degradations only
occur after the life of the baseline SSD has expired. We lack
space to show detailed, time-series latency results for these
synthetic runs, but for an example of this behavior, please
reference Figure 6 from the results of trace-driven evaluation.

From these synthetic results, we identify the following
major three take-aways:

First, for TLC drives, small working-set sizes and large
reserve areas result in enormous gains over the baseline in
excess of an order of magnitude. At first blush these gains seem
egregious, but bear in mind we are starting at TLC, which has
a lifetime around 1,000 P/E cycles, and we transition to SLC,
which has a lifetime 75 times greater. Obviously a full 75 times
improvement is not expected as that is not how the physics of
flash lifetime works, nor can the entire drive be converted to
SLC and still live, but these (still large) improvements are
a function of the great difference in endurance between the
types. The MLC results depict a similar inter-relationship as we
vary the parameters, however demonstrate lower gains possible
than in the TLC case. Again, this relates to the difference
in lifetimes – as MLC lasts approximately six times longer
than TLC from the outset, transitioning to SLC buys us some,
but not as much relative lifetime as in the case of starting at
TLC. Similarly, latency differences between MLC and SLC
are smaller than TLC to SLC, so these gaps (both in lifetime
improvements and degradations) also lessen.

Second, we are witness to a somewhat odd latency degrada-
tion in the TLC case not in the bottom right as we would expect
(highest working size, lowest reserved area) but somewhat up
from that. In analyzing the results, we find that for reserved
areas smaller than around 13%, there is no real change in
lifetime or latency. Right around 13% lifetime begins to
extend, but, because there is limited amounts of converted
“fast blocks,” all too often an access results in a write to a
fast block and a normal block (because the access is larger
than the smaller, fast blocks size, and no other fast blocks may
be available at that time). This results in latencies somewhat
larger than the normal block access until the reserve area grows
enough that a decent pool of fast blocks is available at any
given time in most of the invalid-page buckets.

Third, and what may have been initially most apparent,
we witness extremely similar relative behavior across low,
medium, and high read-to-write ratio graphs. We emphasize
relative because the absolute number of accesses is definitely
not the same (since reads have extremely limited impact on cell
lifetime) across equivalent configurations where only read-to-
write ratio is changed.

D. Trace-Driven Results

Last, we consider the efficacy of ZombieNAND in extend-
ing SSD lifetime and explore its impact on latency over a
variety of real application traces. These ten traces represent
I/O workloads in financial workloads, file servers, user home
directories, and internet SQL servers, derived from traces
available at [11] and [12]. We have quantified and present
specifics about each trace, including the read-to-write ratio and
random vs. sequentiality of the trace in Table III, and present
address reuse of accesses in Figure 4.

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26
R

e
s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(a) Lifetime (Synthetic, TLC 20% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(b) Lifetime (TLC 50% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(c) Lifetime (TLC 80% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

R
e

la
ti
v
e

 C
h

a
n

g
e

 f
ro

m
 B

a
s
e

lin
e

(d) Latency (TLC 20% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

R
e

la
ti
v
e

 C
h

a
n

g
e

 f
ro

m
 B

a
s
e

lin
e

(e) Latency (TLC 50% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

R
e

la
ti
v
e

 C
h

a
n

g
e

 f
ro

m
 B

a
s
e

lin
e

(f) Latency (TLC 80% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1

 1.5

 2

 2.5

 3

 3.5

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(g) Lifetime (MLC 20% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1

 1.5

 2

 2.5

 3

 3.5

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(h) Lifetime (MLC 50% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1

 1.5

 2

 2.5

 3

 3.5

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(i) Lifetime (MLC 80% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

L
a

te
n

c
y
 N

o
rm

a
liz

e
d

 R
e

la
ti
v
e

 t
o

 B
a

s
e

lin
e

(j) Latency (MLC 20% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
a

te
n

c
y
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

(k) Latency (MLC 50% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

L
a

te
n

c
y
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

(l) Latency (MLC 80% Writes)

Fig. 3: Lifetime and latency results for TLC- and MLC-NAND-based SSDs under synthetically-generated random-I/O workloads.
Varying amounts of reserved area, and working set size of the workload are shown within each graph, and varying amounts of
writes are shown across graphs. Lighter colors indicate better lifetime or latency.

Application Writes (in %) Reads (in %)
Trace Total Random Sequential Total Random Sequential
Fin-A 83 47 53 17 45 55
Fin-B 22 33 67 78 78 22

NFS-A 99 1 99 1 1 99
NFS-B 58 22 78 42 1 99
NFS-C 19 0 100 81 0 100
User-A 27 23 77 73 8 92
User-B 9 45 55 91 2 98
User-C 58 18 82 42 6 94
SQL-A 43 25 75 57 10 90
SQL-B 15 26 74 85 2 98

TABLE III: Application trace access composition. Percents
expressed in terms of raw data moved.

In order to keep our results from becoming entangled
amidst too many varying factors, we only use the first 512MB
of unique addresses from every trace. This means some traces
run very close to only issuing 512MB of accesses (very
low address reuse), whereas others issue many gigabytes of
accesses (high address reuse) before hitting the 512MB of
addresses limit. We must do this to a) make sure the traces
do not attempt to use more space than is available in our 1GB
SSD, and b) to normalize the address space accessed amongst
all traces to roughly 50% of the drive.

This does not in any way mean address reuse has been
normalized across traces, as can be seen in Figure 4. Those
graphs sort by descending reuse and provide volumes of

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
t
o
f
T

o
ta

l
W

ri
te

 A
c
c
e
s
s
e
s

Percent of Address Space (Addresses Sorted: Descending Reuse)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(a) Trace Address Reuse (Writes)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
t
o
f
T

o
ta

l
R

e
a
d
 A

c
c
e
s
s
e
s

Percent of Address Space (Addresses Sorted: Descending Reuse)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(b) Trace Address Reuse (Reads)

Fig. 4: CDF plots, which describe the fraction of total accesses commonly used addresses are accountable for. For instance, steep
curves indicate a small fraction of the address space of a specific trace accounts for a large percentage of the total accesses, and
low, slowly growing curves indicate fairly balanced accesses to a large portion of the address space.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

Fin-A Fin-B NFS-A NFS-B NFS-C User-A User-B User-C SQL-A SQL-BL
o
n
g
e
v
it
y
 I
m

p
ro

v
e
m

e
n
t
(R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e
)

Application Trace

Baseline 10% Reserve 20% Reserve 30% Reserve

(a) Trace Lifetime Comparison (TLC)

 1

 2

 3

 4

 5

Fin-A Fin-B NFS-A NFS-B NFS-C User-A User-B User-C SQL-A SQL-BL
o
n
g
e
v
it
y
 I
m

p
ro

v
e
m

e
n
t
(R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e
)

Application Trace

Baseline 10% Reserve 20% Reserve 30% Reserve

(b) Trace Lifetime Comparison (MLC)

Fig. 5: Length of lifetimes shown relative to baseline (normalized to 1.0) for varying reserve areas. Our algorithm always does at
least as good as the baseline, and increased reserves always do as good or better than a smaller one. As shown, some applications
benefit tremendously (an order of magnitude in 3 of the 10 traces) from slight increases in reserves, but may not benefit from
increased reserves beyond that, whereas others demonstrate little or no improvement over the baseline.

accesses on the y-axis, demonstrating that while some traces
exhibit largely uniform accesses across a majority of the access
space (e.g., NFS-C in Figure 4b), others only use a small
fraction of the entire space for all of their accesses (e.g., Fin-B
in Figure 4a). We provide this level of detail because address
reuse is a driving factor in the efficacy of ZombieNAND, as
we will explain in a moment.

We begin by dissecting the lifetime improvements brought
by employing ZombieNAND as shown in the overlaid bar
graph in Figure 5. All lifetimes shown are relative to the
baseline, which has been normalized to 1, and all perform
as good or better than it. Further, increased reserve areas
never results in degraded results, so all results are overlaid
to demonstrate how much life an additional 10% of reserved
area buys us. For instance, in TLC SSD executions of User-A,
we can see that while 10% reserve provides extremely small
improvements over the baseline, expanding to use of 20%
reserve achieves a factor of 2, and moving to 30% gets us just
short of a factor of 7. Curiously, this trend is not consistent
amongst the traces – some benefit from 10%, but skyrocket at
20% and do not improve further at 30%, while others do not
benefit from 10% but equally improve from 20% and 30%,
and yet others do not benefit from any amount of reserve.

Analyzing these findings carefully next to the trace break-
down table and CDF plots as presented earlier, we identify

one clear and defining driver for ZombieNAND improvements:
In order for ZombieNAND to have real impact, writes must
be concentrated into a reasonably small fraction of the total
address space. Looking to our previous synthetic results, this
trend is echoed there, where the working-set size more or
less defines performance. What is starkly different from those
synthetic results is that such randomized uniformity is not
presented in any of these traces, and therefore increasing the
reserves does not always net improvements. In fact, in our best
performers, going from 20% to 30% reserve nets nothing addi-
tional. Analysis of the address reuse graph provides evidence
suggesting why: Unlike randomized, uniform accesses as in the
synthetic graphs, Fin-B, User-B, and SQL-B all reach different
volumes of accesses at different percentages of commonly used
addresses (a CDF of the synthetic I/Os would result in linear
lines with varying slopes depending upon working-set size).
The high-performers tend to have very aggressive slopes in the
first few percent of the most commonly used address space, and
reach very near to 100% of all accesses performed prior to 30-
40% of the address space. Further, also unlike the simplified
environment of the synthetic tests, read-heavy workloads do
demonstrate more significant lifetime improvements than their
mixed brethren with a similar write address reuse curve.

Moving onto the MLC trace-driven results, we are witness
to expectedly lower relative improvements, but more consis-
tency in terms lifetime enhancement across the traces. In fact,

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a

te
n

c
y
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(a) Latency Change over Life (TLC 10% Reserved)

 0.25
 0.5

 0.75
 1

 1.25
 1.5

 1.75
 2

 2.25
 2.5

 2.75
 3

 3.25
 3.5

 3.75
 4

 4.25
 4.5

 4.75
 5

 5.25
 5.5

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a

te
n

c
y
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(b) Latency Change over Life (TLC 20% Reserved)

 0.25
 0.5

 0.75
 1

 1.25
 1.5

 1.75
 2

 2.25
 2.5

 2.75
 3

 3.25
 3.5

 3.75
 4

 4.25
 4.5

 4.75
 5

 5.25
 5.5

 5.75
 6

 6.25
 6.5

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a

te
n

c
y
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(c) Latency Change over Life (TLC 30% Reserved)

 0.75

 1

 1.25

 1.5

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a

te
n

c
y
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(d) Latency Change over Life (MLC 10% Reserved)

 0.75
 1

 1.25
 1.5

 1.75
 2

 2.25
 2.5

 2.75
 3

 3.25
 3.5

 3.75
 4

 4.25
 4.5

 4.75
 5

 5.25
 5.5

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a

te
n

c
y
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(e) Latency Change over Life (MLC 20% Reserved)

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

 3.25

 3.5

 3.75

 4

 4.25

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a

te
n

c
y
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(f) Latency Change over Life (MLC 30% Reserved)

Fig. 6: Latencies over the entire lifetimes of the traces explored, broken down into 10, 20, and 30 percent reserve areas for both
MLC- and TLC-based SSDs and normalized over a 200 point range. Vertical line at x-axis 100 demarcates death of the baseline,
and, if our algorithm improves lifetime for that trace, x-axis 200 indicates death of the ZombieNAND-enhanced drive. Latencies
all shown relative to the baseline, which has been normalized to 1.0.

with the exception of NFS-A and NFS-B, which still do not
improve hardly at all (due to lack of write address reuse), all of
the traces gain a significant amount of lifetime relative to the
best case. Furthermore, the traces also more frequently take
advantage of both the 20% and the 30% jump in reserve area,
unlike TLC, and likely due to the relative space differences
between MLC and TLC.

Finally, the time-series analysis of latency in Figure 6 sheds
considerably more light on the latency situation for Zombi-
eNAND than the average latency values did earlier. While
we do not have space to fully explore the rich graphs there,
two important take-aways exist: One, although ZombieNAND
does a great job of leveraging improved latencies for deceased
blocks early on in the life of the drive for those traces it
can benefit (prior to baseline death), it does not hurt the
traces which do not benefit as much from the scheme until
the baseline is within 5% from death. Two, while increased
reserve does tend to improve lifetime, it also seems to have a
negative impact on the post-baseline-death latencies for some
of the traces. This is likely due to increased contention for
the zombified block pool and “spillover” accesses that stretch
across zombified blocks and normal blocks.

V. RELATED WORK

We divide related works into three categories: First, those
which laid the hardware and physics foundation to perform
this switching. Second, those which employ bit-switching
preemptively for performance reasons. And third, those which
employ bit switching for the same reasons as we do, but to
lesser or different effect.

First, in [13] Taehee Cho et al. propose a dual-mode
flash memory technology, which offers both SLC-mode op-
erations and MLC-mode operations in the same NAND flash
fabrication. While MLC mode operations use a low-voltage-
based incremental step pulse programming (ISPP) method to
tightly control the cell thresholds, SLC-mode employs three
times higher voltage to reach high throughput. Though this
dual-mode NAND flash demonstrates that multiple modes are
possible on the same flash die device, they do not tackle latency
variation, reliability issues, or side-effects resulting from this
architecture.

Moving onto those works which use bit-switching preemp-
tively for performance reasons, we see in [14] Moinuddin K.
Qureshi et al. propose a Morphable Memory System (MMS)
that utilizes different latency values as observed in MLC phase
change random access memory (PCRAM). Based on incoming
request and workloads, MMS uses different resistance values
on PCRAM in an attempt to reduce memory operational
latency. Even though MMS provides insights regarding bit-
switching, it does not deal with reliability whatsoever, and fur-
thermore the access granularities and resistance characteristics
explored differ markedly from those in NAND flash making
MMS inapplicable to this work. In [15], Sungjin Lee et al.
propose a flexible flash file system (FlexFS), which partitions
NAND flash into two sections of SLC and MLC, dynamically
sizing each based on applications requirements. This mode
switching is used to powerful effect to satisfy quality of
service requirements, however, similar to MMS, FlexFS also
ignores reliability issues. Last in this group, in [16], Laura M.
Grupp, et. al., propose a flexible flash translation layer, which
mimics FlexFS in a number of ways. Specifically, it schedules

performance-critical operations and bursty workloads using
SLC, and achieves such in a TLC/MLC/SLC device by re-
vealing latency variation patterns for both SLC, MLC and
TLC amongst pages. Yet again, this only handles performance
characteristics, and importantly, all three of these works pre-
emptively adapt the capacity of the drive, which renders it
incompatible with traditional file systems and unaligned with
manufacturer reliability guarantees.

Last, looking at a selection of works which most aligns
with ours, we find three in particular that take a similar
approach but either do so only superficially or do so for a
different NVM type. In [17], Xavier Jimenez et. al. present, in
their interactive poster, a topical exploration of how reviving
dead blocks might impact lifetime. However, this work fails
to capture all of the benefits of our approach for a number of
reasons: First and foremost, they demonstrate very marginal
improvements because they fail to fully explore the parameter
space of modern SSDs, including, but not limited to, not
looking at varying reserved areas, varying working set sizes,
and a wide range of applications as we do in this work.
Second, they do not examine the impact of adapting the wear-
leveling schemes in modern SSDs to improve the longevity and
performance of SSDs as they age. Last, rather than exploring
this for a general SSD architecture, they only explore a narrow
use-case: Hybrid FTL architectures. By bringing their dead
MLC blocks back as SLC just for buffering for their log-
structured FTL, this results in the healthier MLC still being
written to when the logs are written out, resulting in write
amplification compared to our use case and reads failing to
leverage the vastly improved speeds in SLC. Moving onto
[18], Azevedo et. al. propose “Zombie Memory,” which on its
surface sounds very similar to our work. However, their work
actually explores an orthogonal approach to lifetime extension,
and one which delivers no performance benefits for their MLC
PCM. In fact, as their PCM ages and their techniques come
to the fore, the performance degrades. Specifically, they look
at using error correcting codes across partially dead blocks to
extend one block’s lifetime by sourcing parts of other dead
blocks, and they never consider changing the bit mode from
MLC to SLC; whatever bit-mode it starts as, it stays that way.
This scheme could be applied in tandem with ours to multi-
plicative lifetime gains, a consideration of ours for future work.
Last, in [19], Dong et. al. propose AdaMS, an adaptive PCM
design to switch from MLC to SLC when PCM-specific failure
events occur, and they design circuitry around this specific
functionality to cope with the transition. Because the failure
events, lifetime model used, circuitry designed, and algorithm
proposed all rely on very specific PCM characteristics, which
NAND flash do not share, their approach, while similar, is not
applicable to NAND flash storage.

VI. CONCLUSION

As widespread adoption and new uses arise for NAND-
flash-based SSDs, pressure for higher density will only in-
crease. To achieve this, manufacturers very well may continue
stuffing more bits into flash cells, or continue shrinking them
further when they are already struggling to retain data at
the current feature size generation. Without intervention, this
will reignite worries over flash longevity people were finally
beginning to get over. Enter ZombieNAND, our novel NAND-
cell-reviving scheme with accompanying modified garbage-
collection and “wear-unleveling” algorithm to do something
with those otherwise deceased and unusable flash cells, and
which does so without jeopardizing any manufacturer-specified
guarantees of P/E cycles.

Using a heavily-modified simulator we added a flash
physics engine to so we could predict lifetime of changing
cells with high-fidelity, we evaluate and analyze ZombieN-
AND across over five-hundred synthetic and sixty application
trace-driven experiments. We demonstrate that ZombieNAND
succeeds in extending the lifetime of TLC and MLC SSDs,
sometimes in excess of an order of a magnitude, and for most
of the traces and synthetic configurations run over two times.
Moreover, we show that it absolutely does not deteriorate
the lifetime for workloads that it cannot help, and equally
importantly, does not degrade the latency of runs until after a
normal SSD without ZombieNAND on-board would already be
dead. In fact, for around half of our experiments, it consistently
delivers in excess of 25% faster latencies than the baseline.
Finally, we provide thorough analysis of these results and detail
the property of the traces used to gather them.

VII. ACKNOWLEDGEMENTS

This research is supported in part by NSF grants 1213052,
1302557, 1017882, 0937949 and 0833126.

REFERENCES

[1] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,
“Extending ssd lifetimes with disk-based write caches.” in FAST.

[2] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage
distribution in mlc nand flash memory: Characterization, analysis, and
modeling,” ser. DATE ’13.

[3] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. R. Stan, “How i learned
to stop worrying and love flash endurance,” ser. HotStorage’10.

[4] S. Lee, T. Kim, K. Kim, and J. Kim, “Lifetime management of flash-
based ssds using recovery-aware dynamic throttling,” ser. FAST’12.

[5] B. Godard, J.-M. Daga, L. Torres, and G. Sassatelli, “Evaluation of
design for reliability techniques in embedded flash memories,” ser.
DATE ’07.

[6] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The disksim
simulation environment version 4.0 reference manual,” 2008.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in USENIX ATC,
2008.

[8] “NAND flash memory MT29F32G08ABAAA, MT29F64G08AFAAA
SLC datasheet,” Micron Technology, Inc, Tech. Rep.

[9] “NAND flash memory MT29F8G08MAAWC, MT29F16G08QASWC
MLC datasheet,” Micron Technology, Inc, Tech. Rep.

[10] “NAND flash memory MT29F64G08EBAA TLC datasheet,” Micron
Technology, Inc, Tech. Rep.

[11] K. Bates and B. McNutt. Umass Trace Repository. [Online]. Available:
traces.cs.umass.edu/index.php/Main/Traces

[12] SNIA IOTTA repository. [Online]. Available:
http://iotta.snia.org/tracetypes/3

[13] T. Cho, Y.-T. Lee, E.-C. Kim, J.-W. Lee, S. Choi, S. Lee, D.-H. Kim,
W.-G. Han, Y.-H. Lim, J.-D. Lee, J.-D. Choi, and K.-D. Suh, “A dual-
mode nand flash memory: 1-gb multilevel and high-performance 512-
mb single-level modes,” Solid-State Circuits, IEEE Journal of, 2001.

[14] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montaño, and
J. P. Karidis, “Morphable memory system: A robust architecture for
exploiting multi-level phase change memories,” ser. ISCA ’10.

[15] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim, “Flexfs: A flexible flash
file system for mlc nand flash memory,” ser. USENIX’09.

[16] L. M. Grupp, J. D. Davis, and S. Swanson, “The harey tortoise:
Managing heterogeneous write performance in ssds,” ser. USENIX
ATC’13.

[17] X. Jimenez, D. Novo, and P. Ienne, “Phœnix: reviving mlc blocks as slc
to extend nand flash devices lifetime,” in Proceedings of the Conference
on Design, Automation and Test in Europe, 2013.

[18] R. Azevedo, J. D. Davis, K. Strauss, P. Gopalan, M. Manasse, and
S. Yekhanin, “Zombie memory: Extending memory lifetime by reviving
dead blocks,” ser. ISCA ’13.

[19] X. Dong and Y. Xie, “Adams: Adaptive mlc/slc phase-change memory
design for file storage,” in Design Automation Conference (ASP-DAC),
2011 16th Asia and South Pacific.

