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Abstract
Drawing parallels to the rise of general purpose graphical
processing units (GPGPUs) as accelerators for specific high-
performance computing (HPC) workloads, there is a rise
in the use of non-volatile memory (NVM) as accelerators
for I/O-intensive scientific applications. However, existing
works have explored use of NVM within dedicated I/O nodes,
which are distant from the compute nodes that actually need
such acceleration. As NVM bandwidth begins to out-pace
point-to-point network capacity, we argue for the need to
break from the archetype of completely separated storage.

Therefore, in this work we investigate co-location of NVM
and compute by varying I/O interfaces, file systems, types
of NVM, and both current and future SSD architectures,
uncovering numerous bottlenecks implicit in these various
levels in the I/O stack. We present novel hardware and
software solutions, including the new Unified File System
(UFS), to enable fuller utilization of the new compute-local
NVM storage. Our experimental evaluation, which employs
a real-world Out-of-Core (OoC) HPC application, demon-
strates throughput increases in excess of an order of magni-
tude over current approaches.

1. INTRODUCTION
Purpose-built computing for acceleration of scientific ap-

plications is gaining traction in clusters small and large across
the globe, with general-purpose graphic processing units
(GPGPUs) leading the charge. However, for out-of-core
(OoC) scientific algorithms [23,34,44,47] such as solvers for
large systems of linear equations as commonly employed in
nuclear physics, the bottleneck continues to be the speed
at which one can access the large dataset the computation
relies upon. Improving the speed of computation at the com-
pute node in the cluster will not accelerate these problems –
the central processing units (CPUs) and/or GPGPUs simply
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Figure 1: Trend of bandwidth over time for real-world high-
performance networks versus various NVM storage solu-
tions. These results indicate that even state-of-the-art net-
work solutions are falling behind NVM bandwidth.

idle waiting for the data from remote, slow magnetic disk.
The traditional solution to this problem is to utilize shared,

distributed memories across the cluster to prevent costly
disk accesses during computation. This approach requires a
cluster with an aggregate amount of memory large enough to
bring the entire dataset in at the start of the algorithm. Fur-
ther, high-performance networks such as Infiniband are re-
quired to enable low enough latency and high enough band-
width to make remote accesses in this distributed memory
efficient. These requirements represent very tangible costs
to the system builder and maintaining organization in terms
of initial capital investment for the memory and network and
high energy use of both over time.

To cope with these issues, recent works [35,36] have demon-
strated that utilizing non-volatile memory (NVM), specifi-
cally in the form of flash-based solid-state drives (SSDs), as
storage accelerators can compete with and even out-perform
large distributed memory. This finding is compelling, as
the properties of modern SSDs firmly occupy the previously
sprawling no man’s land between main memory and disk la-
tency, which without SSDs spans three orders of magnitude.
By employing these SSDs alongside traditional magnetic
storage on the I/O nodes (IONs) in the cluster as shown
in Figure 2a, these works demonstrate that only fractions of
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(a) ION-Local NVM-based HPC Architecture.
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(b) Compute-Local NVM-based HPC Architecture.
Figure 2: The previously proposed SSD-accelerated OoC architecture (top), and our proposed migration to compute-local
PCIe NVM (bottom).

the large dataset need be kept in compute node memory at
any one time; new chunks of the dataset can be brought in
over the network from the SSDs on the ION on an as-needed
basis and without much delay to the algorithm.

These efforts embody a very appreciable step towards
bridging the I/O gap between CPU and magnetic disk la-
tencies and bandwidth and reducing overall cluster power
consumption by utilizing low-power SSDs instead of huge
amounts of memory. Nevertheless, the archetype of sep-
arating compute from storage persists – these recent ap-
proaches only make this low-latency, high-bandwidth NVM
available to the compute nodes via network-attached stor-
age. With rapidly increasing parallelism in NVM solutions
such as flash-based SSDs [12, 39, 40], bandwidth of these
devices is already beginning to eclipse available point-to-
point network bandwidth as shown in Figure 1, and shows
great potential to far surpass network bandwidth within the
decade. This trend indicates a redefinition of the role of
NVM as an acceleration technology for OoC scientific com-
puting is required: we must begin to envision and find ways
to implement NVM as a form of compute-local, large but
slow memory, rather than client-remote, small but fast disk.

It should be noted that there have been a limited num-
ber of previous works [25, 28, 29] that also propose utiliz-
ing compute-local NVM. However, these works solely con-
sider the local NVM as a large and algorithmically-managed
caches; they do not propose utilizing it as application-managed
memory as we do. This is not merely a superficial difference,
as the authors in those works report that these cache solu-
tions may take many hours or even days to“heat up,” [17,25]
which will nullify any benefits distributed OoC applications
and similar scientific applications could reap from them.
Specifically, for use of NVM as a general-purpose caching
layer to work properly, the fundamental expectation that
data is accessed more than once in a constrained window
of time must hold true, which is often not the case with
many long-running scientific workloads. For instance, some
scientific workloads work on huge datasets and never access
it twice, whereas others access data multiple times but with
such great spans of time between the accesses (i.e., very high
reuse distances) that the liklihood that it stayed in cache is
extremely small. In fact, as the data is cached on the local
SSDs, the act of caching and evicting the data itself may
very well slow down the execution of OoC-style applications
since they are so dependent upon optimal bandwidth.

Therefore, in this work we make the following contri-
butions to remedy these maladies: First, we design and
present an HPC architecture that co-locates the compute
and NVM storage and evaluate such using a real OoC linear
algebra workload to prove efficacy of our solution versus the
ION-local solutions of the past. Figure 2a demonstrates the
basic layout of the former architecture, whereas Figure 2b
illustrates changes necessary in the cluster architecture to
enact this migration to compute-local NVM. Finding there
to be significant improvements for compute-local NVM, but
not quite as much as should be theoretically possible, sec-
ond, we demonstrate that even quite modern file systems
are not well-tuned for the massively parallel architecture of
SSDs, and therefore design and present the novel Unified
File System (UFS) to overcome these challenges. Third,
we explore and expose some of the overheads implicit in
many state-of-the-art interfaces and SSD architectures that
prevent full utilization of the NVM within. We propose
novel architectural solutions to these overheads, and last ex-
perimentally demonstrate near-optimal performance of the
compute-local NVM using a cycle-accurate NVM simulation
framework, ultimately achieving a relative improvement of
10.3 times over traditional ION-local NVM solutions.

2. BACKGROUND
Before delving into our proposed solution and implemen-

tation, we pause to provide some background. We begin
by summarizing the science performed by the OoC applica-
tion we use for evaluation, and then detail the high perfor-
mance computing (HPC) architecture such computation is
performed upon. Last, we conclude with an explanation of
state-of-the-art NVM technologies explored in this work.

2.1 Out-of-Core Scientific Computing
Many HPC applications process very large data sets that

cannot fit in main memories of parallel architectures. Opti-
mizing such OoC applications requires reducing I/O laten-
cies and improving I/O bandwidth.

As an illustrative example of OoC computing, our fo-
cus in this work is on enabling high-accuracy calculations
of nuclear structures via the configuration interaction (CI)
method . The CI method utilizes the nuclear many-body
Hamiltonian, Ĥ, and due to its sparse nature, a parallel
iterative eigensolver is used [14, 15]. However, Ĥ tends to
be massive and further, requires orders of magnitude more
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Figure 3: Carver Cluster Architecture at Lawrence Berkeley
National Laboratory.

time to compute than a single iteration of the eigensolver.
Accordingly, the most pragmatic approach is to preprocess
and store Ĥ in a capacity-rich medium such as traditional
magnetic storage.

For computing the eigenpairs, the locally optimal block
preconditioned conjugate gradien (LOBPCG) algorithm [42]
is used, within which the most time-consuming part is the re-
peated multiplication of Ĥ and Ψ (Ψ, for our purposes, need
only be known to be a tall, skinny matrix with as many rows
as Ĥ and only about 10-20 columns). As previously alluded
to, due to the massive size of the Hamiltonian matrix, tra-
ditional solutions to this problem utilize large, distributed
main memory to store Ĥ, which are expensive (both in cap-

ital cost and power) and place hard limits on the size of Ĥ
that can be stored in-memory. Because of these limitations,
some computations are simply not possible even on very
large clusters. Even if the required memory is available, this
approach can still be very communication-intensive.

Instead of tackling the problem using strictly main mem-
ory, recent works [35,36] utilize NVM storage on the IONs of

the cluster to store Ĥ and rely on high performance networks
to ferry Ĥij chunks to any compute node desiring them.
To effect this in an automated and efficient fashion, [36]
presents DOoC, a distributed data storage and scheduler
with OoC capabilities. DOoC sits atop DataCutter [20], a
middleware that abstracts dataflows via the concept of fil-
ters and streams. Filters perform computations on flows of
data, which are represented as streams running between pro-
ducers and consumers. The first of two main components of
DOoC is a distributed data storage layer that enables fil-
ters to reach data stored on any node in the cluster. This
layer supports basic prefetching, automatic memory man-
agement, and OoC operations using simplified semantics to
improve performance. Specifically, semantics of DOoC are
such that large disk-located arrays are immutable once writ-
ten, removing any need for complicated coherency mecha-
nisms. This nicely complements the read-intensive nature
of the aforementioned scientific problem. The second main
component of DOoC is a hierarchical data-aware scheduler,
which is cognizant of data-dependencies and performs task
reordering to maximize parallelism and performance. On
the whole, DOoC greatly simplifies the problem of manag-
ing many compute and storage nodes efficiently so that the
user can instead concentrate on the science being performed.

2.2 HPC Architecture
While DOoC works to abstract the system for the physi-

SLC MLC TLC PCM
Page Size 2kB 4kB 8kB 64B
Read (us) 25 50 150 0.115-0.135
Write (us) 250 250-2200 440-6000 35
Erase (us) 1500 2500 3000 35

Table 1: Latency comparison to complete various page-size
operations for each of the NVM types we consider, based on
industry products as specified in [1], [3], [2] and [5] for SLC,
MLC, TLC, and PCM, respectively.

cal scientist, in this work it is still critical to understand the
fundamental architecture of the HPC computation frame-
work in use. Most HPC architectures, though varied and
each burdened with their own nuances and targeting their
own applications, tend to have features akin to the Carver
Cluster shown in Figure 3 (Carver is an OoC-specialized sub-
cluster of the cluster described in detail in [26]). Carver is
housed at the Computational Research Division of Lawrence
Berkeley National Laboratory.

Just as Carver does, HPC architectures in general tend
to sequester compute from storage, with the compute layer
traditionally being numerous nodes with multi-core proces-
sors within. Beside these cores, large memories are provi-
sioned to assure applications run on the compute side of
the HPC architecture do not run out of memory. In fact,
many modern compute nodes are completely diskless, imply-
ing that (barring network-attached swap) applications will
likely fail or be killed off if they grow larger than available
memory. Very high-throughput, low-latency networks such
as the QDR 4X InfiniBand network used in Carver connect
this compute side of the cluster to the storage side, which
is composed of IONs and external storage. These IONs are
charged with managing and exposing their storage over the
network to the compute nodes. The physical storage either
exists within the IONs themselves or more commonly, as is
done in Carver, they are housed externally and attached di-
rectly to the IONs via Fibre Channel. This enables enhanced
manageability of the RAIDed disks and high-availability of
the storage in the event of ION or individual disk failure.

Lastly, and critically for our research, as is demonstrated
in Carver, there are a subset of the IONs that are equipped
with PCIe-attached SSDs. These nodes are dedicated along
with a set of the compute nodes for OoC computations ex-
clusively. As the diagram suggests however, the SSDs are
not local to the compute doing the OoC processing – the
QDR 4X InfiniBand plays an integral role in assuring re-
mote accesses to the low-latency, high-bandwidth NVM are
completed efficiently. However, as demonstrated in Figure
1, providing this assurance is increasingly difficult as band-
width available on these networks grows at a stagnant rate
compared to emerging NVM.

2.3 Non-Volatile Memory
In this work, we concentrate on three types of NAND flash

to address what is commonly available today, and isolate
and study what appears to be a strong candidate for future
NVM devices: Phase-Change Memory (PCM) [4,5,9]. Each
of these NVM types has varying performance capabilities on
read, write, and erase, as documented in Table 1.
NAND Flash Memory. Beginning with NAND flash,
there are three common types based on the number of bits
that can be stored in a given flash cell: single-level cell
(SLC), which stores a single bit, multi-level cell (MLC),



which stores two bits, and triple-level cell (TLC), which
stores three bits. The increase in data density MLC enjoys
over SLC involves trade-offs: SLC tends to provide much
higher durability guarantees to the flash cell and promises
lower and more uniform latencies, whereas MLC wears out
faster and completes accesses in longer and less uniform
times. A corresponding, but further exacerbated, trade-off
occurs for the increased density TLC provides compared to
MLC. While the physical medium in use among all these
NAND-based NVMs is nearly identical, the logic in use read-
ing and writing from this material decides whether one, two,
or three bits are stored on the flash cell. All types employ
memory cells composed of floating-gate transistors, which
have the special property that they must be erased, or dis-
charged, prior to being written again. This characteristic
is referred to as erase-before-write. Due to limitations in
device-level architecture, erases in NAND-flash must occur
to an entire block at a time, which typically range between
64kB and 256kB. This can result in an increased wear on
specific cells in the flash device, which is dealt with by wear-
leveling techniques common in modern devices.
Phase Change Memory. PCM [9], based on the inter-
esting effects of heating and cooling chalcogenide alloy of
germanium, antimony and tellurium (GeSbTe), called GST,
at different rates, has different performance and durability
characteristics than NAND flash. While read operations
upon a GST involves only a series of current sensing pro-
cesses, writes need to perform two different cell-level op-
erations to change the cell to crystalline and amorphous
states (i.e., SET and RESET). Therefore, as shown in Ta-
ble 1, the writing latency in terms of a flash-type’s page
size is slower than that of SLC or MLC while its read per-
formance drastically out-performs flash. In addition, PCM
also becomes worn out with overuse for writing, which in
turn makes it well-suited for OoC applications demonstrat-
ing read-intensive workloads. It should be noted that, even
though PCM offers 103 to 105 times better endurance than
NAND flash, PCM requires wear-leveling at a much lower
level, specifically management for each GST, which might
result in unreasonable memory consumption on the host to
keep counting their erase cycles and mapping information.
In practice, industry applies NOR flash memory interface
logic to PCM by emulating block-level erase operations and
page-based I/O operations. Because of this compatibility
with flash, system designers can manage PCM via flash soft-
ware (e.g., the flash translation layer) and high-level SSD
architecture.
Solid State Disks. Last, whether the NVM material in
question is flash, PCM, or some other new technology, this
will have to be packaged in an SSD type of architecture
to be used as standard storage. Specifically, the individual
SLC, MLC, TLC, or PCM cells are manufactured into the
smallest group, called “dies.” Multiple of these dies are then
placed into packages, whom are in turn lined up along shared
channels. Further, there can even be multiple planes inside
of each die in the case of NAND flash. Clearly, there is an
extreme level of parallelism to manage in an SSD, and the
efficacy of the managing software (either on the SSD or in
the host) plays an extremely important role in extracting
full performance from the underlying technology. However,
if the parallelism is managed well, the extreme disposition
for read performance and parallel nature of modern NVM
solutions puts them in a perfect position to be leveraged as
accelerators for HPC OoC computing.

3. HOLISTIC SYSTEM ANALYSIS
In this section we provide a thorough overview of our ap-

proaches to accelerating OoC computing. These approaches
are comprised of a three-fold, holistic evaluation of the sys-
tem for optimizing I/O throughput. First, we take a look at
the cluster architecture from a high-level, providing expla-
nation for our proposal of co-located NVM and compute and
describing the software infrastructure we utilize to manage
the new localized storage. Second, we explore and expose
software-based overheads, specifically related to commonly
employed file systems that fail to take full advantage of NVM
devices, and present our proposed novel, yet simplified, file
system approach to maximizing NVM performance. Third
and last, we move lower to unearth implicit issues with most
modern PCIe-based SSDs, describe how these overheads can
be avoided to expose fuller performance, and last explore
and demonstrate how future architectural layouts and pro-
tocols could truly bring to bear the full potential of NVM.

3.1 Architecture and Software Framework
While previous works [35, 36] have explored the use of

NVM in OoC computing, these implementations have only
ever considered use of the NVM device alongside traditional
magnetic disk on the IONs. This limited scope was likely
driven by two main factors: cost and tradition.

First, while the price per gigabyte for SSDs is dropping
rapidly as they become commoditized, they are still expen-
sive compared to magnetic disk. Therefore, considering plac-
ing them on the compute nodes rather than the fewer num-
bered IONs may not have been affordable at that time. As
SSDs continue to drop in price and skyrocket in bandwidth,
our proposition of placing SSDs on the compute nodes will
not only become a financially tractable solution, but will be
the cost-efficient solution when compared against purchasing
high-performance networks to serve SSDs from the IONs.

The second factor that likely staved off study of compute-
local SSDs in past research is the tradition of keeping storage
completely isolated from compute. Administration of cou-
pled compute and storage can be more difficult, but as more
and more development is done in areas like the Big Data
space to enable that very type of architecture (e.g. Hadoop,
Mesos, etc), we believe management tools will evolve and
remove much of the burden from the administrator.

Therefore, we present an overview of our modified ver-
sion of the Carver Cluster architecture in Figure 2b. As
can be seen in comparison with the original architecture in
Figure 2a, this approach migrates the PCIe SSDs directly
to the compute nodes, connecting them via the PCIe host
layer. Because this removes the need for frequent data tran-
sit over the network besides communication, it enables high-
throughput and low-latency storage and enables improved
network latencies for computational messages.

All required data should be able to be pre-loaded from
network-attached magnetic storage to the compute-local SSDs
prior to beginning the computation, moving that I/O out
of the critical path and thereby improving compute time.
Such data migration can of course be overlapped with pre-
vious application execution times to hide the pre-loading
duration. Once it is pre-loaded, since most OoC computa-
tions are heavily read-intensive and require many iterations
to complete, no further data transit to spinning network-
attached storage should be required. As alluded to in the
background, this data migration is made easier than ab-
solutely manual intervention on the part of the applica-



tion designer by leveraging the distributed out-of-core lin-
ear algebra framework (DOoC+LAF) [35] and DataCut-
ter [20]. These frameworks work in a manner that parallels
the way in which OpenMP [6] enables efficient parallel pro-
cessing: By using a set of directives and routines exposed
by DOoC+LAF, the OoC application is able to provide the
framework enough knowledge about the application’s work-
ings to enable DOoC+LAF to transparently handle global
and local scheduling of tasks and data migration. In our ap-
proach, we extend the functionality of DOoC+LAF in our
simulation to enable migration of data between data pools
as well as between a monolithic data pool and an individual
node’s memory.

Migration of the NVM device and enabling efficient and
easy utilization of such increases the overall I/O bandwidth,
but in the process uncovers numerous previously hidden per-
formance issues in software and hardware solutions that ex-
ist in-between the application-level and the NVM dies.

3.2 File Systems
Host File Systems. For decades the hard disk has reigned
as king of persistent storage in computing, and its prop-
erties have correspondingly been optimized for in various
layers of the modern Linux kernel. While there is a build-
ing movement [11, 19, 46] to improve the existing I/O stack
for the increasing variety of storage devices (such as NAND-
based SSDs) with different properties than spinning disk,
right now the OS optimizations lag well behind the rapid
development of new and improved SSD technology. There-
fore, in this work, a primary goal in our exploration of the
software side of the I/O stack was to determine how well
existing file systems perform on state-of-the-art as well as
future NVM devices. As we experimentally demonstrate in
Section 4, we find that existing file systems are insufficient to
fully leverage the capabilities of existing NVM devices, and
very poorly suited for the improved speed and parallelism
that trends indicate will exist in future devices.

The reasons for these shortcomings vary among file sys-
tems, but largely revolve around two main drawbacks: First,
all of the examined file systems divide the storage space into
small units called blocks, and these blocks tend to be be-
tween 512 bytes and 4kB. When a read request is issued from
the file system for one of these blocks, sometimes the under-
lying block device layer will aggregate them into a larger
request, but this is not always the case and more impor-
tantly, artificial limits are imposed on how large the size of
the coalesced request can be. Second, many of the explored
file systems perform metadata and/or journalling accesses,
some reads and some writes, to the underlying NVM device
in the midst of the rest of the data accesses. These random
accesses result in increased contention and a corresponding
decrease in throughput.
The Unified File System. Acknowledging these issues,
and considering our specialized vantage point of advocating
for an application-managed storage space, we present our
concept of the Unified File System (UFS), as diagrammed
in Figure 4b. To best understand how UFS diverges from the
norm, let us begin by examining how I/O is handled in the
modern Linux I/O stack. As shown in Figure 4a, the OoC
application will first perform POSIX-level read and write
commands to a specific file as exported by the namespace
of the underlying Linux file system. This file system subse-
quently breaks up that request into logical block-level reads
and writes, which is then passed to the Flash Translation

NAND 

Flash

NAND 

Flash

NAND 

Flash

NVM

Package

NVM 

Controller

NAND 

Flash

NAND 

Flash

NAND 

Flash

NVM

Package

NVM

Controller

NAND 

Flash

NAND 

Flash

NAND 

Flash

NVM

Package

NVM 

Controller

Flash Translation Layer

Native File System (e.g., EXT4, JFS, XFS)

Out-Of-Core Scientific Computing Applications

POSIX API-level Read/Write

Logical Block-level Read/Write

NVM 
Transaction-
level Read, 

Write, Erase

(a) Traditional File Systems.

NAND 

Flash

NAND 

Flash

NAND 

Flash

NVM

Package

NVM 

Controller

NAND 

Flash

NAND 

Flash

NAND 

Flash

NVM

Package

NVM

Controller

NAND 

Flash

NAND 

Flash

NAND 

Flash

NVM

Package

NVM 

Controller

PCIe ENDPOINTS

Unified File System

Out-Of-Core Scientific Computing Applications

POSIX API-level Read/Write

NVM 
Transaction-
level Read, 

Write, Erase

Physical Separation

(b) Unified File System.
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SSD architecture and a higher-efficiency and throughput
native-PCIe SSD architecture.

Layer (FTL), which further reshapes and reorders the in-
coming requests. Finally, the requests are handed off to the
NVM controllers as NVM transaction-level reads, writes, or
erases.

UFS, on the other hand, can be seen to both replace ex-
isting file systems but also, and more importantly, the un-
derlying FTL of the SSD. UFS provides direct, application-
managed access to the NVM media, in terms of raw de-
vice addresses rather than human-readable filenames or spe-
cialized file-system semantics. Therefore, in many respects,
UFS can be seen as less a traditional incarnation of a file sys-
tem than a new interface providing more direct access to the
underlying SSD by taking on many of the roles of the FTL
and elevating them to the host-level. This enables a more
cohesive and collaborative job of I/O scheduling between
the storage medium itself and the host OS. For example, in
our use case since UFS will be receiving large read requests
directly from our OoC application, it is able to translate
and issue those requests directly, which enable the SSD to
fully parallelize these larger requests over the many flash
channels, packages, and dies. It should be mentioned that
this elevation of the FTL to the host OS has already been
undertaken and commercialized by Fusion-IO [32].

While this use-case is quite specialized, as we demonstrate
in Section 4, it delivers such high performance relative to
even tuned traditional file systems, sometimes in excess of
100%, that the extra work is repaid with considerable bene-
fits in execution speed. Moreover, such specialized execution
is particularly well suited to large scale OoC applications,
whom already perform a high degree of tuning to extract
maximum performance out of the extremely expensive clus-
ter they are running on.

3.3 Device Protocols and Interfaces
In this section we uncover and explore solutions to three

major device- and interface-level performance hurdles. We
begin closest to the CPU at the root complex, shown in
Figure 5, and move towards the NVM itself.

The first problem we tackle, the overhead for conversion
between the SATA protocol and the PCIe protocol, is an ar-
tifact of ad-hoc PCIe-based SSD design using bridged flash
components that were originally destined for SATA-based
SSDs. This artifact is a result of manufacturers of PCIe-
based SSD frequently purchasing the internal controllers from
specialized controller companies, and since SATA-based SSDs
are the prevailing market for NVM storage, the controller
companies often only offer a SATA-based controller, shown
in Figure 5a. This overhead manifests itself in terms of
both protocol re-encoding computation time and protocol
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Figure 5: Diagram of the commonly available bridged-PCIe
SSD architecture and a higher-efficiency and throughput
native-PCIe SSD architecture.

re-encoding bandwidth losses.
While the former can be argued to be marginal, and we

do not focus on it in this work, in the latter bandwidth
losses are unarguably tangible. Specifically, the SATA pro-
tocol utilizes an 8/10 bit encoding for the purposes of DC-
balance and bounded disparity, meaning that for every 8 bits
of data 10 bits are actually transferred, 2 of which are sim-
ply wasted in order to assure that there are sufficient state
changes to give the clock time to recover. This implies that
there is an additional 25% overhead in bandwidth incurred
by the internal controllers that is needless; commercially-
available PCIe 3.0 protocols only use a 128/130 bit encod-
ing scheme for an overhead of just 1.5%. Moreover, typical
modern PCIe-based SSDs utilize PCIe 2.0, which shares the
8/10 bit encoding scheme with SATA and therefore the over-
heads implicit with that encoding. Therefore, in this work
we compare these bridged and PCIe 2.0 protocols against
a non-bridged, or native, architecture that allows the PCIe
3.0 protocol non-bridged access to the NAND controller as
shown in Figure 5b.

The second problem we examine is that current interface
lane-widths also limit the full bandwidth possible. In PCIe
2.0, only 5Gb per lane is available, and therefore, since typ-
ical PCIe-based SSDs only provide four PCIe lanes [38],
this results in approximately (post-conversion overheads) a
2GBps maximum throughput potential. This ceiling is far
lower than the maximum possible throughput of, in aggre-
gate, the internal NVM packages, and therefore we propose
and evaluate how expanded-lane architecture that should
arrive in the near future will alleviate this bottleneck. We
begin by examining devices with 8 lanes, already somewhat
beyond typical 4 lane architectures of today, and seeing that
even at 8 lanes there still exist major bandwidth bottlenecks,
we continue to 16 lane PCIe architectures.

In our third and last problem, NVM interface frequencies
limiting bandwidth, we find that even cutting edge proto-
cols such as ONFi major-revision 3 [37] leave bandwidth on
the table relative to what the underlying NVM can deliver.
Therefore, since ONFi 3 provides a bus interface of 400MHz
Single Data Rate (SDR), which is only equal to 200MHz
Dual Data Rate (DDR) 2 RAM, we consider future migra-
tion to an improved interface similar to DDR3-1600 RAM.

All of these considerations are depicted in the diagrams
in Figure 5, and validated in Subsection 4.4.

4. EVALUATION
We begin by discussing our simulation framework, the

traces we gathered from our OoC application on various file
systems, and the system architectures explored using these
traces and our simulator. Finally, we present our results,
which elucidate how our approaches improve on existing
work and provide a model for future HPC I/O acceleration.

4.1 Experimental Configuration
As careful evaluation of numerous types and configura-

tions of NVM memories at scale is a prohibitively expensive
exploration and limits us needlessly to only hardware that
is commercially available today, in this work we utilize our
simulator to perform our exploration. All of our experiments
utilize our NANDFlashSim simulation framework, described
in detail in [21], which enables highly accurate timing models
for the NVM types we examine. Further, we utilize queuing
optimizations within NANDFlashSim as discussed in [22],
to refine our findings for future NVM devices. Last, we ex-
tended NANDFlashSim to handle TLC and PCM.

The architectures that we simulate using this framework,
detailed in Table 2, begin with the approaches taken by pre-
vious work at the top where NVM is separated from the
compute, and continue down towards increasingly forward-
looking architectures. Further, for each of the listed con-
figurations, we examine all four types of NVM discussed:
SLC, MLC, TLC and PCM. Each of these NVM types are
simulated in equivalent SSD architectures equipped with 8
channels, 64 NVM packages, and a total of 128 NVM dies.

4.2 Tracing Methodology and I/O Patterns
In order to use our simulator, we captured traces from

a real-world OoC application [35] that was running on the
Carver Cluster previously mentioned. To collect these traces,
we executed our OoC application on the Carver cluster, and
captured I/O commands at two different levels: First, we
collected POSIX-level traces directly under the application
but prior to reaching GPFS. This was done on all of the
compute-nodes in use for the OoC application on the clus-
ter, however, since it is just a POSIX-level trace, to explore
the impact of migration of the NVM devices from IONs to
CNs, we have to replay it through a real file system in order
to capture the device-level block trace required for input to
NANDFlashSim. This extra effort is well worth it, as it en-
ables us to explore how OoC access patterns are mutated by
the underlying file system in question, an important consid-
eration for the HPC system designer. Second, we collected
device-level block traces completely under GPFS on all of

Location- PCIe PCIe Interface/ PCIe
FileSystem Controller Bus Speed Lanes
ION-GPFS Bridged 2.0/SDR 400MHz 8
CNL-JFS Bridged 2.0/SDR 400MHz 8

CNL-BTRFS Bridged 2.0/SDR 400MHz 8
CNL-XFS Bridged 2.0/SDR 400MHz 8

CNL-ReiserFS Bridged 2.0/SDR 400MHz 8
CNL-EXT2 Bridged 2.0/SDR 400MHz 8
CNL-EXT3 Bridged 2.0/SDR 400MHz 8
CNL-EXT4 Bridged 2.0/SDR 400MHz 8

CNL-EXT4-L Bridged 2.0/SDR 400MHz 8
CNL-UFS Bridged 2.0/SDR 400MHz 8
CNL-UFS Bridged 2.0/SDR 400MHz 16
CNL-UFS Native 3.0/DDR 800MHz 8
CNL-UFS Native 3.0/DDR 800MHz 16

Table 2: List of relevant software and hardware configura-
tions evaluated.
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OoC workload trace from the perspective of the POSIX
block access pattern at the compute node (bottom) and the
sub-GPFS block access pattern at the IONs (top)

the IONs. Since these traces are at the device-level, they
may be directly fed to NANDFlashSim.

These access patterns are compared in Figure 6, and pro-
vide an example of how certain workloads (such as OoC
applications) can be better served from local storage rather
than through a parallel file system such as GPFS, which
will break up that sequential stream in order to perform
striping. Notably, GPFS divides up what was previously
largely sequential in the compute-local trace, which deteri-
orates performance for NVMs that enjoy best performance
when all of the dies are accessed at once (generally only pos-
sible with sequential accesses). Larger stripes combat this
randomizing trend, but only to limited extents.

4.3 Architecture and File System Results
To begin our exploration of the proposed changes, we first

present comparative throughput results for examining how
migrating from ION-local to CN-local impacts our OoC ap-
plication’s I/O bandwidth performance. Since the CN-local
migration implicitly requires exploration of possible local file
systems, we also present results from such in Figure 7a.

In this work, we have explored the following file systems:
The General Parallel File System (GPFS), Journaled File
System (JFS), B-tree File System (BTRFS), XFS, and the
second, third and fourth Extended File Systems (ext2, ext3
and ext4, respectively). [7,8,13,27,41,45,48] These file sys-
tems were chosen because they are currently supported, general-
purpose file systems available on very modern Linux ker-
nels and have relatively wide user bases. Due to lack of
space, we do not delve into each of their specific semantics
and the manner in which they change access patterns when
passing data from the incoming application to the outgoing
block device layer. The important take-away is the degree to
which they individually impact throughput for the underly-
ing NVM device, and in the aggregate that file systems need
to be at least tuned and, ultimately, rewritten, to perform
optimally with NVM devices.

Beginning our discussion with the ION-local case, we see
that it runs up against the throughput limit for QDR Infini-
band. Even in the worst performing file systems for the CN-
local approaches, improvements over the ION-GPFS setup

are 7%, 78%, and 108% for TLC, MLC, and SLC, respec-
tively. As network throughput expands as 40 Gigabit Eth-
ernet and similarly high-bandwidth networking technologies
drops in price, one could argue that they will help to over-
come this bottleneck. However, the chart in Figure 1 sug-
gests the rate at which the network catches up lags well
behind the rate at which NVM media is expanding in band-
width. Therefore, between these poor results for ION-local
NVM and the lack of confidence that such a bottleneck will
diminish in the near future, we believe these results make a
cogent case for compute-local NVM.

Moving to consideration of the very interesting dynam-
ics between file systems as shown in Figure 7a, we conclude
that first, bandwidth varies widely for NAND flash media
between file systems and second, that simple tuning of the
file system and block device layer can go a long way towards
improving performance. In the former conclusion, the dif-
ference between the lowest performing file system ext2, to
the highest performing, non-tuned file system BTRFS, we
can see an increase in bandwidth by a factor of 2 when con-
sidering TLC. Further, in the case of ext4-L, which stands
for ext4 with “large request sizes,” we show that by sim-
ply turning a few kernel knobs (in this case knobs related
to the number of file system requests that can be coalesced
together at the block device layer in the kernel), we demon-
strate an improvement of about 1GB/s. These differences,
and improvements in the latter case, are all strongly related
with the size of the requests that actually reach the under-
lying SSD. As a direct result of this, by preserving the size
and sequentiality of the requests from the OoC application,
UFS is able to reach the maximal throughput available un-
der PCIe 2.0 with eight lanes. A last observation we make
is that, due to the much higher read speeds of PCM, it is
able to obscure the differences between file systems as the
PCIe 2.0 8x bottleneck becomes the only limit of interest.

To understand where to go from these bandwidth results,
in Figure 7b we measure and document just how much band-
width performance is left over in each architecture and for
each NVM type. By looking at the remaining bandwidth
for the NVM media, we are able to assess just where the
bottlenecks might be. For example, all of the media in the
ION-GPFS case is leaving a lot of performance untouched
because of the major bottleneck being the network; the me-
dia spends a lot of time simply idling waiting for the data to
be sent or received across the Infiniband. Somewhat less ob-
vious, it is interesting to see that while most of the CNL file
systems leave little behind for the NAND flash memories,
UFS does. This gives a better example of how this graph
should be interpreted – by using the underlying NVM me-
dia more efficiently, and reaching a bandwidth bottleneck
in the PCIe interface, UFS-controlled media completes its
requests faster and therefore ends up idling, which is why
the bandwidth left-over is much higher than in any other file
system. This remaining bandwidth leads us to examine how
to overcome the bottlenecks in the hardware to extract that
remaining performance, as we do in the next subsection.

4.4 Results of Device Improvement
As discussed in Section 3.3, we take a three-part approach

to exploring how to reduce overheads and eliminate bottle-
necks we discovered and discussed earlier. First, we examine
how removing the needless SATAe bridging in common PCIe
devices and migrating to a much lower encoding cost inter-
face such as PCIe 3.0 will help reduce bandwidth losses. Sec-
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Figure 7: Performance achieved and left-over comparison between traditional ION-local architecture on GPFS and CNL
architecture using various file systems and four different NVM types.

ond, we examine how improved lane widths, such as moving
to use of all of the lanes available in PCIe (i.e., 16), will alle-
viate the performance overheads we observe. Third and last,
we examine how improved NVM bus frequencies beyond the
state-of-the-art ONFi 3 standard might finally expose full
performance of the NVM media.

Results of this exploration and experimentation are shown
in Figure 8a. First, we show the UFS results from the pre-
vious bandwidth graph as a comparison point; again, those
results are limited by the bandwidth of PCIe 2.0 8x. Second,
expanding the lanes from 8 to 16 in CLN-BRIDGE-16, but
staying with PCIe 2.0, we see that bandwidth only increases
marginally, even though the bandwidth is theoretically twice
the base case. We determine this to be a result of the new
limit becoming the overheads of the 8/10b encoding uti-
lized by PCIe 2.0, indicated by the BRIDGE keyword in the
name, and the slow speeds of the NVM bus.

Third, moving beyond PCIe 2.0 to a non-bridged, lower
encoding overhead interface of PCIe 3.0 that uses a 128/130b
encoding, and a faster, DDR bus interface that operates
at 800MHz, we can see that CNL-NATIVE-8 outperforms
CNL-BRIDGE-16 by a factor of 2, despite having only half
as many PCIe lanes available. This provides credence to
the idea that, even in a smaller focus such as within the
SSD itself, a holistic approach to improving the hardware
must be taken. Improving the lane-widths did very little
compared to the broader approach of increasing the NVM
bus speeds and migrating to a lower overhead interface.

Last, as we observed bandwidth being left over even with
this vastly improved architecture, evinced in Figure 8b, we
realized the full 16 lanes of PCIe 3.0 could be utilized to
finally reach full performance of the NVM media within.
Therefore, the last set of results in Figure 8a show just how
fast this NVM media can perform if the bottlenecks and
overheads between the OoC application and the individual
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Figure 8: Performance achieved and left-over beginning with
the basic UFS architecture and extending through increased
PCIe lanes and improved NVM bus frequency architectures.

NVM packages are alleviated. In the case of PCM, an in-
credible factor of 16 improvement is observed between the
initial ION-GPFS results and the CNL-NATIVE-16, despite
the underlying NVM media not changing whatsoever. This
highlights just how seriously bottlenecked current NVM de-
vice solutions are today. Even when considering the rela-
tively slow media of TLC, we observe an increase of 8 times
between those two architectures. Moreover, if considering
compute-local against compute-local to perhaps be a bit
more fair, we can see that the improvements are still many
times the performance of an untuned, traditional file system
running on limited hardware compared to our custom UFS
on expanded hardware architecture.

4.5 Digging Deeper
While the high-level findings in terms of overall bandwidth

and bandwidth foregone for each architecture examined were
helpful in our exploration of the configuration and architec-
ture space, these only scratch the surface of what is really
going on within the SSD and fails to tell the entire story.
Therefore, in this subsection we dig deeper into these find-
ings by first analyzing utilization at a lower level, in terms of
channel utilization, and then even lower at the per-package
level. Further, we examine the two particularly interesting
NVM types, TLC and PCM, and measure how much time
is spent by each device on specific operations and what level
of parallelism is extracted for each architecture.

We define“channel-level utilization”as the percent of total
channels kept busy throughout the execution of the OoC ap-
plication, whereas “package-level utilization” is the percent
of active NVM packages kept busy serving requests through-
out the execution of the OoC application. Beginning with
average utilization for each type of NVM and every archi-
tecture explored, an interesting and altogether unexpected
result shows itself in Figure 9a for the ION-GPFS architec-
ture: while the low performance exhibited by this architec-
ture and the bottlenecking on the network would lead one
to believe the channel utilization should be low, quite the
opposite occurs, coming in second across all architectures
except for results involving UFS. As it turns out, the rea-
son behind this is the striping in GPFS, which results in
more randomized accesses and more channels being utilized
simultaneously. However, it is important to note that high
utilization does not necessarily mean the channels are be-
ing used efficiently. As the deeper package-level utilization
chart shows in Figure 9b, while the ION-GPFS architecture
utilized its channels well, the utilization of the underlying
packages is quite low compared to UFS.

A second observation is that, with the exception of GPFS,
whom stripes quite unlike all of the local file systems, higher
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Figure 9: Average channel and package utilizations across all considered architectures and file systems.

utilizations seem to correlate with a larger fraction of the
total performance being extracted, and, as can be seen, the
UFS-based architectures manage to achieve near full utiliza-
tion of the channels and reach greater than 80% of the av-
erage package bandwidth. Last, we observe that even small
increases in efficient utilization of the underlying NVM me-
dia can result in multiple gigabytes per second of bandwidth
in real increases, giving credence to the importance of tuning
even the finest details of the SSD to assure that the NVM
media is fully leveraged.

As a last way to dig into the true reasons behind our
findings, we have inserted probes into our simulator to try
and quantify the time each architecture spends performing
particular operations in the I/O process and additionally, at
what level of parallelism the architecture is operating at on
average. Results from such are shown in Figure 10.

For our operation quantification, we decompose all time
spent in the device into six major categories:

• Non-Overlapped DMA: Time spent in data movement
between SSD and the host, which includes thin inter-
face (SAS), PCIe bus, and network.

• Flash-Bus Activation: Time spent in data movement
between registers (or SRAM) in NVM packages and
the main channel.

• Channel-Bus Activation: Time spent in data move-
ment on the data bus shared by NVM packages.

• Cell Contention: Time spent waiting on an NVM pack-
age already busy serving another request.

• Channel Contention: Time spent waiting on a channel
already busy serving another request.

• Cell Activation: Time spent actually performing a read,
write, or erase operation on an NVM cell. This in-
cludes time spent moving the data between NVM in-
ternal registers (or SRAM) and the cell array.

Figures 10a and 10c are extremely useful dissections of the
execution time for each architecture and clearly describe just
what operations represent the biggest bottleneck to improv-
ing performance. Specifically, we can see that in the ION-
local cases, a significantly larger proportion of time is spent
in non-overlapped DMA than any other case, a direct re-
sult of the network bottleneck. Similarly, while internal bus
activities, demarcated by flash bus activation and channel
activation, dominate the proportion of time spent on opera-
tions in traditional file systems due to their errant division
of requests, we witness how UFS truly leverages the under-
lying NVM by drastically reducing the time spent on those
operations. Last, towards the right side of both of the PCM
and TLC figures, we can see that the time spent actually
performing the read, write, or erase on the underlying NVM

cells grows significantly, becoming the dominant operation
in the case of TLC. This is a nearly ideal case – the closer
one can get to waiting solely on the NVM itself, the better.

Then, we classify parallelism into four types:

• PAL1: System-level parallelism via solely channel strip-
ing and channel pipelining.

• PAL2: Die (Bank) interleaving on top of PAL1.

• PAL3: Multi-plane mode operation on top of PAL1.

• PAL4: All previous levels above.

Parallelism is an important and distinct metric to exam-
ine apart from utilization or operation time breakdown as
reported in the last sets of graphs – it provides an idea of the
effectiveness of an architecture from the perspective of the re-
quest, rather than from the perspective of all of the hardware.
However, this simultaneously means that a small request
may be issued that blocks a subsequent large request; both
of these will achieve full parallelism when they are run, but
they conflict on the targeted NVM and therefore utilization
may be low. Similarly, time spent in contentious states in
the execution breakdown figures may be high, so ultimately
all graphs must be concurrently examined for a complete
understanding of the situation. The important take-aways
from the parallelism graphs plotted in Figure 10 are first
that ION-local NVM storage runs into issues attempting to
parallelize requests; because the parallel file system above it
decomposes sequential accesses into stripes this can easily
lead to needlessly small and unparallelizable accesses. As
the TLC graph in Figure 10b shows, ION-local PCIe stays
almost completely parallelism type PAL3, and almost never
makes it to the full parallelism of PAL4. Second, UFS-based
architectures are able to almost entirely reach parallelism
state PAL4, largely a result of the increased sequentiality ex-
posed by UFS compared with traditional file systems. The
PCM-based graph is almost entirely in state PAL4, a direct
result of the much smaller page sizes than in the NAND-
based NVM types. In other words, incoming I/O requests
can be easily be spread across all dies in the SSDs, which
improves the degree of parallelism. Last, due to the fast ac-
cess speeds of PCM, such SSDs are able to fully utilize their
internal channels and reach near-to-theoretical maximums
in performance, irrespective of the file system employed.

5. RELATED WORK
There is a rapidly expanding body of work on acceler-

ating scientific applications, improving the state-of-the-art
for solid-state storage, and exploring how SSDs can be used
to improve scientific workloads. However, in that collection
there are few works that parallel our approach to utilize
compute-local NVM storage (not server or client caches).
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(a) TLC Execution.
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(b) TLC Parallelism.

ION
-GP

FS
CNL

-JFS

CNL
-BT

RFS
CNL

-XF
S

CNL
-RE

ISE
RFS

CNL
-EX

T2

CNL
-EX

T3

CNL
-EX

T4

CNL
-EX

T4-L
CNL

-UF
S

CNL
-BR

IDG
E-16

CNL
-NA

TIVE
-8

CNL
-NA

TIVE
-16

0
10
20
30
40
50
60
70
80
90
100

Ex
ec

ut
io

n 
Br

ea
kd

ow
n 

(%
)

 N
on-overlapped D

M
A 

 Flash bus activation 
 C

hannel activation
 C

ell contention 
 C

hannel contention 
 C

ell activation

(c) PCM Execution.
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(d) PCM Parallelism.

Figure 10: Breakdowns in terms of time spent in particular states in the SSD and at what level of parallelism was extracted
during the execution, for both TLC and PCM NVM types.

Beginning from the scientific vantage point, there have
been quite a few investigations to determine if NVM, par-
ticularly flash-based SSDs, are effective alternatives or sup-
plements to traditional HPC storage for scientific workloads.
As a sampling of such research, Cohen et al. [16] compara-
tively evaluated an SSD array against local disk and a file
server using three supercomputing benchmarks. Further,
considering a wider range of SSD types and parallel I/O
traces, [30,40] provided a broader understanding of SSD I/O
performance for various scientific data-intensive workloads.
Moving to the field, several research laboratories are making
efforts to improve the performance of their supercomputers
with the SSD-based storage. For instance, San Diego Super-
computing Center deployed SSDs in their supercomputer,
Gordon [18, 24, 31], to reduce the latency gap between the
memory and disks, as has the Tokyo Institute of Technology
for their supercomputer, TSUBAME [43].

Agnostic of the application, there exist a number of works
that consider flash-based SSDs as caches. The works are too
numerous to identify all of them in this space, but notable
works that are actually designed for use in a distributed
setup include [25,28,29]. All of these differ from ours in that
they use the flash-based SSD strictly as an extension of the
traditional DRAM buffer cache. While the effect of a cache
might appear on the surface to be equivalent, or even easier
to effect, than allowing manual management of the NVM as
we do in this work, the major issue is the extremely long time
to properly heat up the cache. Because the working set size
of OoC computing is so large, and data is not as frequently
doubled-back on as in other arenas, we actively chose against
implementing our approaches as caches because it would
have such low hit rates. In a similar bin as these caching
works, the authors of [33] utilize flash-based SSDs as write-
back caches for checkpointing. Again, in this solution the
application is again oblivious of the rather different medium
it is sending checkpoints to and therefore, cannot leverage it
towards improved steady-state performance; this will only
improve checkpoint performance. We are not aware of any
works where the flash is kept as a compute-local, application-
or framework-managed pre-load space, which is critical for

the efficacy of our approach in OoC computing.
Last, in [10] the authors design an interface for non-volatile

memory that could be seen as similar to our UFS design.
However, this similarity is merely superficial – not only does
their proposal break our prerequisite that NVM should be
colocated with every compute node in use, but more impor-
tantly they insert yet another interposing layer to allow the
NVM to be accessed in byte-addressable fashion, directly
anathema to our goal of reducing interposing layers and im-
proving performance.
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7. CONCLUSION AND FUTURE WORK
As NVM bandwidth begins to exceed point-to-point net-

work capacity, we need to rethink existing approaches to
utilizing NVM storage in HPC architectures. In this pa-
per, we present an alternative role for NVM as a form of
compute-local, large but slower memory, which we show is
capable of removing current performance bottlenecks with-
out major modifications to existing HPC architectures. Fur-
ther, we proposed novel software and hardware optimiza-
tions that improve the compute-local acceleration and work
to more directly expose the NVM for OoC applications. Our
comprehensive evaluation, in which we consider a diverse
set of potential NVM storage mediums, device and stor-
age interface configurations, revealed that our compute-local
SSD approach alone offers on average 108% performance en-
hancement compared to conventional client-remote SSD ap-
proaches, and our software- and hardware-optimized SSDs
improve an additional 52% and 250%, respectively, on the
base-line compute-local SSD approaches.
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