
The Pennsylvania State University
The Graduate School
College of Engineering

A PROTEAN ATTACK ON THE COMPUTE-STORAGE GAP IN

HIGH-PERFORMANCE COMPUTING

A Dissertation in
Department of Computer Science and Engineering

by
Ellis H. Wilson III

© 2014 Ellis H. Wilson III

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

August 2014

The dissertation of Ellis H. Wilson III was reviewed and approved∗ by the following:

Mahmut T. Kandemir
Professor of Computer Science and Engineering
Thesis Advisor, Chair of Committee

Padma Raghavan
Professor of Computer Science and Engineering

Wang-Chien Lee
Professor of Computer Science and Engineering

Christopher Duffy
Professor of Civil Engineering

Raj Acharya
Head of the Department of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

ii

Abstract

Distributed computing, in particular supercomputers, have facilitated a significant
acceleration in scientific progress over the last three-quarters of a century by enabling
scientists to ask questions that previously held intractable answers. Looking at
historical data over the last 20 years for the top supercomputers in the world,
we note that they have demonstrated an amazing doubling in performance every
13.5 months, well in excess of Moore’s law. Moreover, as these machines grow in
computational power, the magnetic hard disk drives (HDDs) they rely upon to
store data to and retrieve data from double in capacity roughly every 18 months.
These facts considered in concert provide a foundation for the recent data-driven
revolution in the way both scientists and businesses extract useful knowledge from
their increasing datasets.

However, while computation and capacity potential for these machines is growing
at a breathless rate, a disturbing but oft-ignored reality is that the ability to access
the data on a given HDDs is shrinking by comparison, doubling only once every
decade. In short, this means although the capability to process and store the data
scientists and businesses are so excited about is here, the ability to access that data
(a prerequisite for processing it) falls behind year in and year out.

Therefore, the focus in this thesis is to find ways to limit or close the annually
widening compute-to-bandwidth gap, specifically for systems at scale such as
supercomputers and the cloud. Recognizing that this problem requires improvement
at numerous levels in the storage stack, we take a protean approach to seeking
and implementing solutions. Specifically, we attack this problem by researching
ways to 1) consolidate our storage devices to maximize aggregate bandwidth while
enabling best-of-breed analytic approaches, 2) determine optimal data-reduction
techniques such as deduplication and compression in the face of a sea of data and
a lack of existing analysis tools, and 3) designing novel algorithms to overcome
longevity shortcomings in state-of-the-art alternatives to magnetic storage such as
flash-based solid-state disks (SSDs).

iii

Table of Contents

List of Figures vii

List of Tables viii

Acknowledgments ix
Gopher Guts . xiv

Chapter 1
Introduction 1
1.1 Problem Statement . 1
1.2 Thesis Statement . 5

1.2.1 Data Consolidation . 6
1.2.2 Data Reduction . 6
1.2.3 Storage Device Improvement 8

Chapter 2
Data Consolidation: Enabling Big Data Computation atop Tra-

ditional HPC NAS Storage 9
2.1 Introduction . 9

2.1.1 The NAS and HPC Narrative 10
2.1.2 Contributions . 12

2.2 Background . 13
2.2.1 Overview of HDFS . 13

2.2.1.1 Replication in HDFS 14
2.3 Architectures Explored . 14
2.4 Reliability Analysis . 17

2.4.1 Failure in NAS . 17
2.4.2 Failure in Hadoop . 17
2.4.3 Combining the Architectures 18
2.4.4 Why Not Just NAS? . 19

iv

2.5 Data Locality and Transport . 20
2.5.1 Write Transport . 20
2.5.2 Read Transport . 21

2.6 RainFS . 22
2.6.1 Design Desirata . 22
2.6.2 Implementation Overview 23
2.6.3 File Operations . 23

2.6.3.1 Create . 24
2.6.3.2 Delete . 25
2.6.3.3 Move . 26

2.6.4 Failure Handling . 27
2.7 Evaluation . 28

2.7.1 Experimental Setup . 28
2.7.2 Benchmarks . 29
2.7.3 Results . 30

2.8 Related Works . 33
2.9 Conclusion . 34

Chapter 3
Data Reduction: Scalable Deduplication and Compression Eval-

uation 35
3.1 Introduction . 35
3.2 Background . 38
3.3 Compression . 38
3.4 Deduplication . 40
3.5 Design of TreeChunks . 43
3.6 Exemplary Evaluation . 46
3.7 Conclusion . 58

Chapter 4
Data Storage Improvement: Extending SSD Longevity 59
4.1 Introduction . 59
4.2 Background . 63

4.2.1 SSD Architecture . 64
4.2.2 NAND Flash Overview . 64
4.2.3 The Physics of Cell Wear-Out 65

4.3 Wear-Unleveling for Lifetime . 66
4.3.1 The Basics of Wear-Leveling 66
4.3.2 The Early Switching Pool 67

4.4 Evaluation . 69

v

4.4.1 Simulation Framework . 69
4.4.2 Experimental Setup . 71
4.4.3 Synthetic Results . 72
4.4.4 Trace-Driven Results . 76

4.5 Related Work . 82
4.6 Conclusion . 84

Chapter 5
Conclusion 85

Bibliography 86

vi

List of Figures

1.1 Performance results on HPLinpack for the Top500 supercomputers . 2
1.2 HDD capacity and bandwidth growth over the years 4

2.1 Flow of write I/Os in traditional HDFS 13
2.2 Write I/O flows in explored architectures 15
2.3 Errant pass-through I/O flows . 20
2.4 TeraSort Suite benchmark results for 1 and 2 replicas 29
2.5 Throughput impact on write-intensive workloads when going from

replication level of 1 to 2. 32

3.1 Impact of chunking on data compressability 40
3.2 Compression efficacy filesystem map 56
3.3 Deduplication efficacy filesystem map 57

4.1 ZombieNAND proof-of-concept on raw flash chips 60
4.2 Typical SSD Architecture . 63
4.3 Lifetime and latency synthetic evaluation for TLC SSDs 73
4.4 Lifetime and latency synthetic evaluation for MLC SSDs 74
4.5 Trace address reuse CDF . 78
4.6 Impact of ZombieNAND on lifetime for trace-driven evaluation . . . 79
4.7 Impact of ZombieNAND on latency for trace-driven workloads . . . 80

vii

List of Tables

2.1 Disk and rack failure tolerance by architecture 16
2.2 Hardware and VM resources . 28

4.1 Access latency based on operation type and bit-level 72
4.2 Experimental configurations . 72
4.3 Trace access composition . 77

viii

Acknowledgments

I proceed with great caution in writing the acknowledgments for my Ph.D. below.
On the one hand, it would be utterly callous to not pen down some form of thanks to
the many people who have contributed in one way or another towards the successful
completion of this milestone in my life. However, on the other, and perhaps what
I fear more, it seems almost impossible to enumerate and thank each and every
influence that has brought me to this moment in time. Therefore, to whomever I
errantly exclude, please forgive the flighty memory of an academic.

This dissertation and my Ph.D. on the whole are in no small part attributable
to the interactions with and inspiration from three distinct groups in my life: fellow
academics, key figures in my distance running career, and my friends and family,
which I address in order below. Please note that persons addressed within categories
generally follow first chronological impact–no assignment of greater or lesser import
should be derived from their ordering.

While my love for computing in general stretches as far back as my very early
teens, my interest in high-performance distributed computing was born during my
undergraduate sophomore year when I read “Engineering a Beowulf-Style Compute
Cluster,” a free online book by Robert G. Brown (rgb). Although I cannot recall
how I first stumbled upon it, my thanks must be given to rgb for writing (and
freely providing) the text and those on the Beowulf mailing list for their helpful
support and advice as my curiosity for distributed computing first blossomed.

This curiosity first struggled to find appropriate soil (i.e., free machines for me
to build a cluster with) until I was introduced to Michael Prushan, a professor
of chemistry at my undergraduate institution, La Salle University. During my
junior and senior years as I learned by trial-and-error how to build a cluster, he
was an unparalleled advisor of my research with a lust for problem-solving and
teaching I will never forget. In working with him I was offered my first exposure
to interdisciplinary research, an experience every computer scientist must have to
fully appreciate and understand the scope of his own field. Equally critically, he
introduced me to Robert Levis, another chemistry professor and director of Temple

ix

University’s Center for Advanced Photonics Research (CAPR). It was during my
undergraduate internships with Robert at CAPR that I managed my first sizable
cluster, learned (again, mostly by trial-and-error) to write applications that would
scale, was exposed to the basics of machine learning, and came to grips with the raw
difficulty of problems academics face (and fall in love with) on a day-to-day basis.
This problem difficulty and corresponding progress by tiny, deliberate steps was
addictive, and a key instigator in my application to Ph.D. programs. My sincere
thanks to you both for your advisement and education in what I consider my first
years as a scientist.

To this day it is not entirely clear to me why my doctoral advisor, Mahmut
Kandemir, called me with an acceptance to a top-thirty computer science Ph.D.
program, but I am eternally indebted to him for giving me a chance. I will admit I
was not the classic graduate student in any way, shape, or form, having concurrently
started and helped to run a company throughout my five years in the program,
getting married after my first year, and living and researching remotely for nearly
half of my program’s duration. However, through all of my struggles and what
proved to be the hardest (and most rewarding) intellectual adventure I have had
to date, he was, and still is, a compassionate advisor who knows how to push his
students to their finest while respecting their limits and their private life. I imagine
it was in this wisdom that, when I was floundering the most transitioning from
classwork to solely research midway through the program, he introduced me to a
fellow graduate student by the name of Myoungsoo Jung (MJ). I am reasonably
certain that without the company of and collaboration with MJ, my Ph.D. may
not have continued to fruition, or in the best case, this dissertation would be a
shell of what it is now. MJ not only served as a collaborator and friend during
the second-half of my Ph.D., but also as an advisor in many ways as I refined
my research and publication process, and as a hallmark example of what a great
scientist looked like up close. To both Mahmut and MJ, unspeakable thanks for
your patience, support, and encouragement as I grew into the scientist I am now.

Mahmut’s wisdom and respect for private life as an advisor also led to my
introduction to Garth Gibson. Garth provided some of the most challenging and
interesting internships during the last three summers of my Ph.D., and a good chunk
of the research presented in this dissertation is a direct result of his advisement.
Working with Garth refined my love for distributed computing into a love specifically
for the equally distributed storage that backs it, and researching and working under
the guidance of the “father of RAID” was an unparalleled opportunity–one which
I will appreciate for years to come in my tenure at Panasas. Just as it was with
Mahmut, my thanks for giving me a chance summer after summer and now full-time,
Garth.

Moving from the academic influences that must be acknowledged for their

x

more obvious impact on this dissertation, less direct but in many ways equally
potent influences from my running career must be noted and thanked for their
development of my personality that was key in getting through the Ph.D.. In both
distance-running and a Ph.D., there is a requirement to be able to perform under
immense fatigue and to cope with short-term failure given a vision of long-term
improvement and ultimate success. Beginning in high school, David Lapp and Keith
Andrews served as my cross-country and track-and-field coaches and developed
me from a very unathletic and untempered youth to a conference champion and a
competitor at the state-level. Under their care I was not only personally tempered
both mentally and physically, but was given my first chance at leadership as captain
of the team my senior year. And so, to coaches Lapp and Andrews, my sincere
appreciation–I would have been spent in the first mile of this Ph.D. without your
impact on my personality.

Beyond high school, because of my unwavering devotion to distance running
and desire for a full career in the sport, I met the only character in this list that
I am forced to acknowledge for the personal development I underwent as a result
of all that was wrong with him and his coaching of myself. Marcus O’Sullivan,
my coach for a very short time, embodied all that is counter to that of a scientist.
During even that brief time under his guidance he evidenced a deep hatred for
critical thought, discouraged question, demonstrated an uncanny willingness to
go along with even senseless orders from those above simply due to systematic
problems, and ultimately exuded a toxic elitism that could not be more in contrast
with what a great coach and leader should be. In any moment of difficulty during
this Ph.D. or any run I have been on since I left that team I have drawn strength
from the memory of all that he was and all that I refuse to become. I am forced to
thank you for that, and that alone, Marcus.

Last, to the man who welcomed me with open arms after my tenure under
Marcus, embodied all that I knew a good coach could be, and developed me into
the best runner I ever was and likely ever will be, thank you, Charles Torpey. Even
on our first meeting it was plain I was at home on your team, and although you
sought for our team to be the best, the social sludge of individual elitism was
nowhere to be found. You taught through sarcasm, suffered with us in our losses,
rejoiced with us in our successes, and led us with an iron will. My only regret is
that I did not spend my entire undergraduate running career under your guidance
and vision as a coach, and that you are no longer living to provide further guidance
as I close this chapter of my life. I have no doubt that you would be proud of me
for my accomplishments here, different as they may be from distance running, and
my unending thanks go to you for picking me up and piecing me back together at
a time in my life when I felt incredibly alone and fragile.

Completing my acknowledgments, I must note the huge impact my friends and

xi

family have had on my person as a whole and my development into a scientist
throughout this Ph.D.. To all of my longtime friends and the new additions to our
wonderful group, knowing I will see and enjoy your company no matter how far we
get from each other has been an immense motivator during this Ph.D.. In particular,
for your encouragement, the many discussions I have had with you regarding this
academic adventure, and your faithful friendship during this time, I wish to thank
Bill Dowd, Maria Allegretto, Matt Gallis, Emily Smith, Alex Middleton, Ryan
Miller, Sue Speck, Jon Jinks, Emily Myers, and Mike Motily. You all have been
there through thick and thin for me, and I am indebted more than a few beers for
it.

To my family and particularly my parents, Ellis and Barbara Wilson, whom I
frequently spar with, infrequently understand, and rarely appreciate as much as
I should–a big thanks. As much as it pains me to say so, I have inherited many
wonderful traits from you, both scientific and creative, and they have served me
extremely well over the past five years. To my inherited family, especially Ed and
Jean Allegretto, my equal thanks. You have treated me as your own son in some of
my most sincere times of need, and without any expectation of repayment. And,
only partially in jest, a big thanks to the unspoken (in all forms) collaborators on
all of my papers: Henry the harrassing turtle, Philip the egregiously large goldfish,
and Bear the fur-issuing Husky-Shepherd mix. Last, to my wife who has been
with me for over a decade and has helped me over every pebble and boulder of
this journey, my love and my thanks, Maria Allegretto. I would never have seen
the starting line much less the finish to this Ph.D. without your help, advice, and
encouragement. You have been a driving force in my life, a catalyst of change that
has kept me on my toes, have pushed me to the brink of my capability, and caught
me when I began to fall. My thanks would cover the rest of these pages if I were
forced to quantify it, and so, I instead:

xii

Dedication

For, and in large part because of, the two strongest women I have had the pleasure
to cross paths with in this life:

Maria Allegretto, my best friend, wife, bedrock of my sanity, fellow academic, and
perpetual reminder of what really matters.

Ann (Melnick) Wilson, my grandmother, feverish advocate of education,
unbreakable feminist, and known troublemaker now relegated to memory.

xiii

Gopher Guts

You were sitting at the gate awaiting spirits and provisions,
I was privy to a headache over pirouetting innards,
In the mirror sweating pitchers, who’s there simian or lizard?
As it were there is a disappearing difference,
In ambition and material;
Antiquated gentleman outlaws reduced to a ferris wheel of vitriol.
Move as a godless heathen;

black gums, tooth gone, bootleg Yukon Cornelius
I’m a - ksshht! That’s better, here we here we go,
Disenchanted face printed on a zero-dollar bill,
Got a little plot of land where authority isn’t recognized,
Contraband keeping the core of his Hyde Jekyll-ized,
Check! Never mind a misanthrope vying for affection

to the wretched sound of mysticism dying,
It is something he must handle on his own;

the wind blown way, wanna win? Don’t play.

Excerpt from Gopher Guts on Skelethon – Aesop Rock

xiv

Chapter 1 |
Introduction

In 1987 in his book “Empirical Model-Building and Response Surfaces” George E.P.
Box famously stated, “Essentially, all models are wrong, but some are useful.” [1]
This quote was supposedly adapted by Peter Norvig in the Wired article, “The
End of Theory: The Data Deluge Makes the Scientific Method Obsolete,” to read
instead: “All models are wrong, and increasingly you can succeed without them.” [2]
Fortunately, Norvig didn’t make this flawed statement, as he corrects on his site [3]:

“[I]f the model is going to be wrong anyway, why not see if you can get
the computer to quickly learn a model from the data, rather than have
a human laboriously derive a model from a lot of thought.”

This mentality represents the slow but steady change that has occurred in how
we, as brilliant but comparitively sluggish human beings, pursue problem-solving
with a machine (or a supercomputer) by our side that doubles in speed and storage
capacity every roughly one and a half years. Each of those epochs it becomes twice
as efficient to spend our time “teaching the computers to learn” rather than trying
to solve the problems directly ourselves.

1.1 Problem Statement
Unfortunately, one critical consideration is regularly downplayed while the focus
remains on speed and capacity: Storage Bandwidth. Storage bandwidth is the very
ability to get those widening seas of valuable data to and from the processor – limit
it and the capability of the machine to extract knowledge from data is immensely
handicapped.

1

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

H
P

L
in

p
a
c
k
 R

m
a
x

Year

#1
Mean
#500

(a) TOP500 Rmax

 0.01

 0.1

 1

 10

 100

 1000

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

H
P

L
in

p
a
c
k
 R

m
a
x
/C

P
U

M
e
a
n
 C

P
U

 C
o
u
n
t
(N

o
rm

a
liz

e
d
 t
o
 1

 a
t
s
ta

rt
)

Year

Mean Rmax/CPUs
Normalized Mean CPU Count

(b) TOP500 Rmax by CPU Growth

Figure 1.1: Biannual performance on the defacto High-Performane Linpack (HPLin-
pack) benchmark used to rank the top 500 supercomputers in the world. (a) shows
raw megaflops for systems from 1993 to present for the first-ranked, last-ranked,
and the mean of all 500 machines, demonstrating a super-Moore’s-law doubling rate
every 13.5 months. (b) normalizes the mean flops result over the same time-span
against the mean number of CPUs in the systems for the red line, and shows raw
CPU growth normalized to 1 for the first data collection in 1993 on the blue line.
This graph explains the super-Moore’s-law doubling rate, as the red line doubles
once every 22 months, very near to Moore’s-law, and raw CPU count doubles once
every three years. Combined they account for the higher doubling rate in (a).

To appreciate the gravity of this situation, let us examine the most powerful
(known) computing resources in the world: The supercomputers on the TOP500
list. [4] As demonstrated in Figure 1.1a, members of the elite TOP500 list have shown
consistent and appreciable compute growth over the many years since its incarnation,
roughly doubling every 13.5 months. This graph lays out the performance on the
canonical HPC benchmark, High-Performance Linpack (HPL) [5], for the #1

2

supercomputer, #500 supercomputer, and an average performance over all 500.
Interestingly, a doubling rate of once every 13.5 months well exceeds Moore’s law,
which states transistors should double once every two years [6], during which time
performance roughly follows that increase.

Expecting this disparity to result from concurrent increases in raw processor
counts being added to the supercomputers in use over time, we plot normalized
mean CPU count (no accelerators are considered) as the blue line, where 1 is the
first mean taken in 1993. Note that in the 1993 to 1997 era, CPU counts reduced
slightly as vector processors in big iron dominated, and from around 2005 to 2010
the processor counts were overstated as the TOP500 list reported core count as
equivalent to processor count. This was corrected in 2010, where we see the slope
of the processor count growth return to a pre-2005 angle. Overall, we see that
every three years twice as many processors are used in the top 500 supercomputers
across the globe, which accounts for the super-Moore’s-law effect observed on the
overall performance statistics in the Figure 1.1a. Correspondingly, when we divide
the mean performances shown in that graph by the mean CPU counts, we find that
the adjusted doubling rate (as shown in the red line) returns to a sane once every
22-months, very near to Moore’s law.

Moreover, magnetic hard disk drive (HDD) capacity, the space required to store
more and more valuable data going into and coming out of these rapidly improving
machines doubles once every 18 months as shown in Figure 1.2a, which plots HDD
capacity growth over the last 30 years for over 200 HDDs. This is promising as
it out-paces Moore’s law and nearly meets the 13.5 month doubling rate of the
TOP500 list, however, just having the improved ability to store the data is not
enough – one must also be able to get at that data (or put data to that storage)
at scalable speeds, which brings us to bandwidth. Plotting the capacities and
bandwidths for sequential read benchmarks for over 1500 HDDs from the early
1990s to 2013 (year first released is extremely difficult to attain for this data, and
the data in the first graph did not report bandwidth), we can see that bandwidth
scaling has entered a phase of linear growth, if not outright stagnation. Fitting
those over 1500 drives to a curve and correlating it to the first graph where we
ascertained that capacity doubles every 18 months, we arrive at a very sobering
conclusion about hard disk bandwidth improvements: Magnetic HDD bandwidth
should only, in the best case, be expected to double once per decade. This fact needs

3

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1
9
8
0

 1
9
8
2

 1
9
8
4

 1
9
8
6

 1
9
8
8

 1
9
9
0

 1
9
9
2

 1
9
9
4

 1
9
9
6

 1
9
9
8

 2
0
0
0

 2
0
0
2

 2
0
0
4

 2
0
0
6

 2
0
0
8

 2
0
1
0

 2
0
1
2

 2
0
1
4

C
a
p
a
c
it
y
 (

G
B

)

Year

Fit-line: exp(0.452*x-901.432)

(a) HDD Capacity Growth

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

M
a
x
im

u
m

 R
e
a
d
 B

a
n
d
w

id
th

 (
M

B
/s

)

Capacity (GB)

Fit-line: 20.5088 * ln(x) - 34.0089

(b) HDD Bandwidth Growth

Figure 1.2: Capacity and bandwidth growth over the years. (a) shows capacity
growth from records of over 200 hard drives from 1980 to present, demonstrating
a doubling effect every 1.5 years. (b) plots maximum read bandwidth results for
over 1500 hard drives ranging over the same time-span, but correlates bandwidth
to capacity as year first released was not available for the results. Correlating (a)
and (b), we see that bandwidth enjoys a far lower improvement rate, only doubling
once every decade, and appears to be reaching a stagnation point.

to be considered aside the reality that capacity is reaching super-paramagnetic
limits [7], and the technologies that are currently being put forth to cope with these
such as Heat-Assisted Magnetic Recording (HAMR) [8], Bit-Patterned Magnetic
Recording (BPMR) [9], and Shingled Magnetic Recording (SMR) [10], are all
expected to retain present-day bandwidths in the best case, and reduce them in
the worst.

Put succinctly, although the compute power of HPC systems continues to grow
at exceptional rates, and the disks used in these systems provide necessary capacity
gains to meet computation increases, the very ability to get at the data on the disk

4

is proportionally shrinking year by year. A decade ago, it took a mere 30 minutes
to read all of the data off of a HDD – today it takes over 11 hours for the largest
commercially-available disks – in three years it is perfectly reasonable to expect it
to take a full day to read all of the data off of a single HDD. Therefore, in order to
keep up with rapid computation and capacity gains and avoid this bleak future,
novel ways of employing the storage, manipulating the data that is stored within,
and making improvements to the very storage devices themselves must arise to
cope with this immense (and ever increasing) gap.

1.2 Thesis Statement
Exploring solutions to this compute-storage gap in the large-scale domain (i.e.,
HPC and Big Data) is the focus of this dissertation, and we take a multi-pronged
approach to researching and engineering around it. These prongs are spread between
the three obvious ways to cope with the reality of decreasing relative bandwidth in
the near future:

• Reduce device fragmentation – assure all of your storage devices are working
in concert

• Reduce the capacity occupied by the data being moved

• Attempt to use fundamentally different storage devices than traditional HDDs

By first reducing device fragmentation we achieve performance and capacity gains
for the aggregated file system that are magnified by capacity reduction and a move
to fundamentally different storage devices. However, this ordering is not necessarily
required: Each of these approaches has a magnifying impact on the remainder, no
matter which you choose to implement first. Nevertheless, the more of these three
administrators and researchers consider in tandem to cope with bandwidth losses,
the larger the benefits will be. Therefore, put more specifically, our tactics can be
categorized into data consolidation, data reduction, and storage device improvement,
and this dissertation follows this organization, respectively being chapters 2, 3 and
4.

5

1.2.1 Data Consolidation

In the first prong of this research we consider the fracturing landscape of modern
storage. As various frameworks to cope with “Big Data” arise to provide simpler
and more scalable ways of analyzing large pools of data, they also espouse (often
require) divergent hardware configurations. This results in increasing amounts of
the aggregate storage at an organization breaking into distinct pools. For instance,
in web-scale companies real-time data tends to be kept in low-latency, enterprise
storage solutions such as Network Attached Storage (NAS) arrays and managed
by Relational Database Management Systems (RBDMS), while ad-hoc analytics is
performed on a separate, mirrored pool of this data distributed across commodity
machines and managed by a Big Data framework like Hadoop. So, not only is the
overall bandwidth available to the organization split into two between the distinct
systems, but copies need to be frequently performed to facilitate accurate and
updated analytics, incurring unnecessary load on the systems in terms of CPU,
network, and storage resources.

Therefore, in this work we examine an increasingly popular configuration:
enterprise NAS storage aside an Apache Hadoop instance. Apache Hadoop, arguably
the most popular “Big Data” analytics framework, enables programmers to leverage
the rapid time-to-result programming framework MapReduce over distributed,
commodity storage co-located with the compute. However, this comes with all of
the downfalls of distinct systems as previously mentioned, so we examine how one
might integrate Hadoop MapReduce into and on top of a NAS solution to enable
consolidated storage and data. We demonstrate three different architectures enable
converged storage, and explore performance and reliability impacts. Finally, finding
all three to fall short in some regard or another, we design, implement, and propose
a Reliable Array of Independent NAS File System (RainFS) to achieve the best of
all architectures.

1.2.2 Data Reduction

While getting the data all into a single storage system to maximize aggregate
bandwidth available and eliminate the need for capacity and bandwidth consuming
copies is a critical first step, in our second research prong we take a different tact
to solving this problem: data reduction. As demonstrated in Figures 1.1 and 1.2,

6

increasingly systems will have “left-over” compute cycles while they wait for storage
to keep up. Therefore, we expect data reduction techniques like data compression
and deduplication, while computationally expensive (in certain cases) today, may
very well be cheap relative to waiting on storage in future systems. Numerous
compression techniques have existed for years, and deduplication is a fairly well
established technique at this juncture as well.

However, compression only works for certain types of data, and deduplication
similarly will only provide benefits if real duplication exists. Employing these
techniques on a pool of data that does not benefit from them will in the best case
just expend needless compute, and in the worst exacerbate the already strained
storage bandwith. Therefore, it is critical to enable the system administrator to
evaluate her data on various compression and deduplication algorithms (and their
many tunables) to ascertain if those techniques are effective for her data and if
so, what parameters provide the biggest benefits. Ironically, there do not appear
to be any easy tools for system administrators to evaluate whether deduplication
and/or compression will work for their data short of turning these techniques on
for the entire storage system, which may seriously disrupt production use of it, or
acquiring a demo storage system from a vendor, which is an awkward and expensive
experiment.

To fill this gap, we design a two-stage tool called TreeChunks that is built to
scale and evaluates the efficacy of various compression and deduplication algorithms
on a specified data pool. In the first stage high-performance C code is employed to
rapidly chunk through the data and execute compressors and build a deduplication
fingerprint database. In the second stage perl code is used to aggregate statistics
from the distributed first-stage runs on compressors, and to count fingerprints in
the deduplication database. Further, the second stage also builds information-rich
diagrams, which depict with varying colors and node sizes just what portions of
the file system benefit the most from the many compression and deduplication
algorithms and the permutations of their parameters. This enables the system
administrator to evaluate these techniques on their data inexpensively and to trans-
late these statistics (e.g., gzip provides 50% savings) into value-rich organizational
findings (e.g., the engineering teams data enjoys 75% savings from gzip while the
rest of the organization only enjoys 10%).

7

1.2.3 Storage Device Improvement

Having consolidated the data into a single high-performance storage system and
enabled ways to evaluate if state-of-the-art data reduction techniques effectively
can boost bandwidth by shrinking the data itself, we now shift our focus to the
lowest-level of the storage system: the storage device itself. The most popular
storage device alternative to traditional magnetic spinning HDDs, NAND-flash-
based solid state disks (SSDs), enable orders of magnitude lower latencies, lower
power, and much higher bandwidths than their spinning brethren.

However, these devices suffer from two main issues: density and wear-out.
In the first case, while it has been improving dramatically in recent years, they
traditionally lack the raw capacity HDDs enjoy. In the second, these devices employ
NAND flash blocks that must be erased before they are written to again, and these
erases can only be performed a limited number of times before the block can no
longer reliably retain data. Furthermore, as manufacturers push for higher densities
to meet consumer demand and expectations, the wear-out issues have come to the
fore again as modern cell technologies such as triple-level cell use smaller feature
sizes and enjoy as much as two orders of magnitude lower lifetime than their larger
feature-sized grandfathers, single-level cell, did.

Nevertheless, SSDs yet remain a powerful ally towards reducing the compute-
storage bandwidth gap, so in this research we explore ways to enhance longevity
for modern, low lifetime SSDs. Specifically, we bring forward a technique we dub
“ZombieNAND,” which leverages the reality that single-level, multi-level, and triple-
level cell technologies are all just logical differentiations. Therefore, we see if it is
possible to transition a dead block down one bit-level and regain lifetime. Finding
that it is, we design a physically-accurate simulator to explore the magnitude of the
lifetime gains available and if any performance implications exist. Simulating these
drives from pristine state to death, we demonstrate over ten-fold improvements
in lifetime and in some cases reductions in latency in excess of 50% over a wide
variety of synthetic benchmarks and real trace-driven workloads.

8

Chapter 2 |
Data Consolidation: Enabling
Big Data Computation atop Tra-
ditional HPC NAS Storage

2.1 Introduction
Cluster computing specialized for processing massive virtual and physical sensor
data, one definition of the emerging Big Data vertical, arose from internet ser-
vices computing, especially the MapReduce [11], Google File System [12], and
BigTable [13] tools and their open source siblings, Hadoop [14], its distributed file
system (HDFS) [15], and HBase [16], respectively. These systems were developed
with a specific system model: identical cost-optimized nodes containing all the
compute and storage available to the cluster, simplified semantics tailored to target
applications, and the expectation of frequent failures [12]. With this heritage, inter-
operation with systems and tools from other environments such as high performance
computing (HPC) can not be taken for granted, including traditional HPC storage.
Because HPC computing systems are of comparable scale to Big Data clusters, it
is particularly interesting to be able to support both types of applications using
existing HPC storage for convenience and load sharing, if not consolidation for
lower associated costs.

With the emergence of resource allocators like Mesos [17] and Yarn [18], a
Big Data cluster can dynamically distribute resources between different parallel
program schedulers such as Hadoop or HPC’s ubiquitous Message Passing Interface

9

(MPI) tools [19]. This enables a sharing of clusters arising from the needs of internet
services and those arising from the needs of high performance computing. Switching
a set of nodes from executing Hadoop programs to executing MPI programs is
easy; its just stopping and launching a set of user-level binaries. However, storage
solutions for Big Data frameworks differ widely from that of traditional HPC. For
example, HDFS stores write-once files that can only have one writing process,
while HPC parallel file systems such as PVFS [20], Lustre [21], GPFS [22], and
PanFS [23] support concurrent writes to the same file from thousands of processes.
Further, HDFS was designed to store all data in the local disks of compute nodes,
using replication for fault tolerance, and to interface to its servers through library
(Java class) plugins. Parallel file systems, on the other hand, typically store all
data in external storage systems, using RAID erasure coding for fault tolerance,
and access servers through a Virtual File System (VFS) kernel module in each host.
Therefore, if data is stored in the native format of one, it is not easily accessible to
the other and copying is required between the storage mediums; with terabytes to
petabytes of data the copy operation itself, not to mention the egregious amounts
of wasted capacity, becomes prohibitively expensive.

2.1.1 The NAS and HPC Narrative

Nevertheless, due to the attractiveness of the solutions in the Big Data space, many
organizations have acquired or put aside a separate set of nodes for exclusively
Hadoop compute and storage and have suffered through the cost of capacity waste
and expensive copies. Doing so may not be economically or tractably possible
due to the huge datasets in traditional HPC NAS storage, but even if it were,
the scattering of storage throughout the compute nodes comes with a number of
drawbacks, which motivate our effort to seek consolidated compute for HPC and
Big Data computing atop a NAS system:

• Loss of Infrastructure Consolidation: Unlike traditional POSIX filesystems, it
is non-trivial to execute a variety of applications on HDFS without adapting
them to its specific semantics and interface.

• Forced Import/Export: Sharing data between HDFS and traditional storage
requires an import or export, wasting storage and network resources.

10

• I/O Performance Degradation: For more typical workloads I/O performance
degrades since Hadoop is tuned for performance on large datasets.

• Loss of High-Availability: The Hadoop NameNode is a single point of failure
and requires administrative intervention when downed.

• No Modification of Files: It is impossible to modify previously written data,
as HDFS is a write-once-read-many distributed file system.

• Inefficient Compute-Storage Coupling: When an HDD fails, system admin-
istrators may be forced to power down the node or at least restart Hadoop
services, resulting in loss of computational resources.

While we argue these reasons give credence to even considering NAS for use under
MapReduce, we admit there are other approaches possible in exploring solutions
to this problem, such as adapting Hadoop to more efficiently handle scientific
problems as recent research has attempted [24, 25]. Therefore, it is important
to pause here and clarify that we attack it from the very specific narrative that
existing traditional HPC architecture is in-place already. Specifically, we make the
following key assumptions: First, the HPC compute is already in place and tuned
to efficiently operate with discrete, high-performance NAS storage. Second, the
HPC applications developed over many years, which run on these systems have
been written in a combination of C or Fortran and MPI to maximize performance
for their extensive executions and presume POSIX or near-POSIX semantics,
making wholesale transition to MapReduce and a pure Hadoop environment highly
intractable. We argue these assumptions reflect the reality of most supercomputing
centers in the world today.

This narrative and its assumptions are critical to point out so that it is clear
experimentally comparing MapReduce atop NAS against traditional Hadoop instal-
lations would be both inappropriate and discordant with our theme – we are not
attempting to prove traditional HPC nor a converged architecture is the way of
the future for HPC. Our goal in this work is to show, if you presume the existence
of high-performance NAS storage and compute nodes with limited storage, that
using a Big Data computation framework such as Hadoop atop this NAS storage is
not only possible, but, if cleverly configured, can be efficient and thereby expedite
time-to-science for post-execution analytics.

11

2.1.2 Contributions

In this work we seek to explore possible architectures that allow Hadoop MapReduce
to run alongside traditional POSIX applications and against a consolidated storage
system provided via NAS. Our first contribution towards this effort is a thorough
exploration of the following three architectural arrangements that use existing
software solutions to accomplish the aforementioned goal:

1. HDFS as a Client Service: As HDFS employs node-local VFS to store chunks,
reconfiguration can replace node-local storage with remote NAS storage.

2. HDFS as a Wire Protocol: Alternatively, because HDFS is a client-server
model with a network protocol for all communication, it could also be treated
as a Network-Attached Storage (NAS) protocol like NFS [26] or CIFS [27],
with the server running within the NAS system itself.

3. No HDFS : While HDFS requires MapReduce applications to efficiently operate
on its data, MapReduce will efficiently operate on non-HDFS data if configured
correctly, so skipping HDFS entirely and going directly to NAS is possible.

In each of the above architectures we thoroughly analyze the impact the arrange-
ment has on reliability and experimentally demonstrate the effect that each has on
application performance. Finding the above solutions satisfactory yet suboptimal,
our second contribution is the design and development of a new Hadoop FileSys-
tem interface class. Note that Hadoop applications perform I/O via a FileSystem
class which can be replaced. Further, alternative FileSystem implementations to
HDFS are available for communicating to Amazon S3 [28], CloudStore [29] and
PVFS [30].

Our novel file system, the Replicating Array of Independent NAS File System
(RainFS), overcomes all of the major issues we discovered. As we had done with
the three more standard approaches above, we analyze and evaluate RainFS along
the dimensions of reliability and performance. We experimentally demonstrate the
performance advantages of RainFS to be as high as 127% for write-intensive work-
loads and 217% for read-intensive workloads when solely utilizing erasure-coding
reliability mechanisms. This superiority continues when we combine replicating
and erasure coding reliability mechanisms, demonstrating as high as 254% for

12

write-intensive workloads and 210% for read-intensive workloads. In all tests per-
formed, RainFS performed as well or better than all other architectures tested,
while providing reliability guarantees exceeding any of the architectures which
perform comparably to it.

2.2 Background

2.2.1 Overview of HDFS

Figure 2.1: Flow of I/O from MapReduce
tasks, through HDFS, and eventually to
each nodes local HDD.

When Google introduced its MapRe-
duce framework [11] in 2004, a re-
structuring of large scale data anal-
ysis was spurred with the most no-
table open-source implementation of
Google’s framework being Hadoop [14].
The Hadoop sub-projects we utilize are
Hadoop MapReduce, Hadoop YARN,
and the Hadoop Distributed File Sys-
tem (HDFS). MapReduce allows users
to write parallel programs that are
automatically broken into Map and
Reduce tasks and executed in paral-
lel within a distributed environment.
YARN allows multiple resource man-
agement and scheduling mechanisms to
co-exist (MapReduce, MPI, etc.) in one
managed cluster. HDFS, taking its initial specification from the Google File Sys-
tem [12], makes distributed storage accessible to MapReduce programs, and is
tuned to perform well for local hard-disk-drives (HDDs) in the same cluster as the
computation. This architecture is now referred to as Converged Storage. Note that
converged storage breaks from previous architectures that separated processing
from storage, normally taking the form of commercial RDBMS or MPI atop NAS
systems.

Hadoop MapReduce and HDFS have been shown to scale to thousands of nodes,

13

millions of files and petabytes of storage [31]. HDFS provides double-disk failure
tolerance via file replication, out-of-band metadata access, is designed in Java for
platform independence, supports Unix-style file permissions, and automatic capacity
balancing between nodes. Hadoop has been adopted by many organizations, some
of the most notable being Yahoo!, Facebook, Twitter, and LinkedIn.

2.2.1.1 Replication in HDFS

HDFS achieves double-disk failure tolerance by replicating a file across multiple
nodes (and therefore distinct HDDs). The process, shown in Figure 2.1, proceeds
in the following manner: First, contact the NameNode for file creation (for clarity,
communications with the NameNode are excluded from all diagrams). A response
will provide the locations to write each copy and requesting Node A will begin
concurrently writing its first copy to the local disk and its second copy over the
network to Node B. The NameNode will attempt to specify a rack-local Node B to
take advantage of higher-performance intra-rack communication, and specifies a
rack-remote Node C to provide rack-failure tolerance. Node B concurrently writes
to its local disk and pipelines that replica to the last destination, Node C, referred
to as replication pipelining in HDFS. It is intended to share the replicating work
with another node (B) and decrease the total time to replicate.

2.3 Architectures Explored
We evaluate three architectural options regarding where the DataNode (DN) dae-
mons are located; we examine running them on the client node as in typical Hadoop
usage, running them on the nodes within the NAS system (as if HDFS were a
wire-protocol like NFS or CIFS), and bypassing DN daemons altogether, as shown
in Figure 2.2.

The simplest manner in which one can utilize the Hadoop framework with NAS
is to specify NAS mount points instead of paths to local storage. As can be seen
in Figure 2.2a, this architecure is the most similar to the traditional HDFS setup
shown in Figure 2.1 since the DN daemon still runs within a client node. Hadoop
will attempt to write to and read from these paths and, finding that it can do so,
will happily begin to use it as if it were a local drive. However, as a side-effect of
HDFS believing this is a local drive, one will have to make sure to provide unique

14

(a) DN-on-Client (b) DN-on-NAS Node

(c) No-DN (d) RainFS

Figure 2.2: Flow of writes in the different architectures we explore, shown with a
replication level of 2 for all but Figure 2.2c, which relies on internal redundancy.
Dashed arrows signify communication that is purely network overhead, and grayed
out nodes indicate that they have no role in the writing of the file from Node A.

15

RAID 5 RAID 6 RAID 5 RAID 6 RAID 5 RAID 6
Repl. 1 Repl. 1 Repl. 2 Repl. 2 Repl. 3 Repl. 3

DN-on-Client 1 / 0 2 / 0 3 / 1 5 / 1 – / – – / –
DN-on-NAS Node 1 / 0 2 / 0 3 / 1 5 / 1 5 / 2 8 / 2
No HDFS 1 / 0 2 / 0 – / – – / – – / – – / –
RainFS 1 / 0 2 / 0 3 / 1 5 / 1 5 / 2 8 / 2

Table 2.1: The number of concurrently failed disks or racks (shown in disk / rack
format) that a given architecture can tolerate without data loss. Considered for all
combinations of typical replication and RAID levels, and dashes (– / –) used to
indicate an architecture cannot operate at this reliability level.

paths within the mount-folder for each node to use or else nodes may accidentally
corrupt each other’s files. As we later show, while easy to setup and get started
with, this method has serious reliability and performance short-comings.

The second manner we explore using Hadoop on NAS is to move the DN out
from each client and to run it directly on NAS nodes. In this architecture we specify,
within the NAS nodes, paths to the mount-point(s) for the remaining NAS slaves
so that incoming data to the node can be sent via these mounts to the individual
storage nodes. This data flow is depicted in Figure 2.2b. However, forcing all of
the data both for reads and writes through these nodes creates serious performance
bottlenecks, as we experimentally demonstrate later.

Our third option is to completely avoid using HDFS, directing MapReduce
tasks to access the underlying NAS mounts as if locally available to the system.
One large caveat is demarcated in Figure 2.2c – the underlying NAS storage must
either be a single system or multiple systems that provide federating services, such
that the exposed namespace is unified and the NAS systems transparently achieve
striping among themselves. This requirement is an artifact of MapReduce jobs
being designed to operate on a single path, rather than a series of paths because
HDFS is presumed to be in use. In order to fully remove HDFS, these NAS systems
must expose a single namespace, provide reliability mechanisms, and provide load
and capacity balancing.

16

2.4 Reliability Analysis
Reliability guarantees and the means by which these guarantees are kept vary
between NAS systems and HDFS. In this work we consider the following fault
model:

• Failure of a Disk: The disk is the most basic unit of storage, and is the
most common part to fail.

• Failure of a Rack: Inability to get to an entire rack (e.g. top-of-rack network
failure) or destruction of an entire rack of storage leads to the transient or
permanent failure of an entire rack, and storage systems must provision for
such failures.

To ease discussion, we use the term failure domain to refer to the range of
physical resources that lose data upon failures greater than what it can tolerate.
The trade-offs when considering the size of a failure domain tends to be a perfor-
mance/reliability trade-off; large domains (across many NAS systems) allows for
high-bandwidth access to single files since many disks can simultaneously help in
the access, whereas small domains (perhaps one domain per NAS) reduces the
chances of concurrent failure but have segmented namespaces and therefore fewer
disks can help for a single file access.

2.4.1 Failure in NAS

To continue to operate upon failure of one or more disks in a NAS system, RAID (i.e.
erasure coding) is typically employed, which can recover from a defined maximum
number of concurrent disk failures based on the RAID level.

To handle failure of network and power components of the storage system that
would otherwise result in inaccessibility of an entire rack, NAS systems employ
redundant hardware (e.g., redundant network interface cards and power supply
units).

2.4.2 Failure in Hadoop

HDFS provides tolerance to individual disk failure in a similar but nuanced manner
when compared to traditional erasure coding done in NAS systems. In effect, HDFS

17

fault tolerance mimics declustered RAID1 with copies total. By replicating every
file created on distinct HDDs, this assures that upon failure of a drive another copy
will remain. The location and health of all replicas is managed by the NameNode.

To handle failures of an entire rack (caused by inaccessibility or physical damage)
HDFS still employs replication, but it relies on knowledge of the topology of the
HDDs to assure resilience. By assuring that at least one replica exists in a separate
rack than the original copy, HDFS provides single-rack failure tolerance. The
specific layout and flow of these replicas was diagrammed and can be referenced in
Figure 2.1.

2.4.3 Combining the Architectures

We now consider how each of the proposed architectures placed atop NAS handle
failure. When we report “failure tolerance of X disks”, we are referring to the
maximum X which can be tolerated, no matter which specific X disks fail.

Let us first consider placing the DN on the client node and configuring paths
to NAS mounts. As mentioned, HDFS assumes each time it copies a file, it is in
a totally separate disk (and therefore, failure domain), which will not be true if
each client node sees paths to all NAS systems. When given multiple paths a DN
will randomly select one of the paths for writing the file to load balance as this
normally doesn’t matter (typically each path is a discrete, local HDD). However,
when DN-on-client points at NAS paths, we risk sending multiple replicas to the
same NAS.

However, we discovered that achieving a replication level of two is safely possible
by giving all of the clients in a given rack access solely to the single NAS system
in the same rack (and thereby a single failure domain), and providing HDFS the
topology of the system such that it knows all those clients are in the same rack.
HDFS will therefore immediately attempt to make the second replica outside of the
rack, assuring that the two copies are in two separate NAS systems. However, at
triplication and beyond, Hadoop will attempt to create a rack-local second replica,
and therefore duplication is the highest level of replication possible when using
HDFS on NAS. This limits the possible reliability schemes as presented in Table
2.1.

Moving to the DN on the NAS node architecture, one will see that this no

18

longer suffers from the replication level ceiling restriction as discovered with the last
architecture. This is a result of placing a single DN on each NAS node; since we only
have a single NAS system for each rack, there is a one-to-one mapping of DN to rack
and therefore accidental duplication to the same rack becomes impossible. This
allows for replication up to the number of NAS systems, achieving a comparatively
wider range of reliability scenarios, shown in Table 2.1.

Last, examining the impact of guiding MapReduce to operate directly on the
underlying NAS mount-point, we are faced with a much different situation since
the NAS systems must be federated in order for this architecture to work. Because
the NAS units are federated, RAID-5 will only provide single-disk tolerance across
all of them, and RAID-6 similarly only provides double-disk tolerance. Further,
without HDFS we lose replication, so we have no way to tolerate rack failure or
ensure availability in the face of network, power, or some other fault in a rack that
causes it to go offline.

2.4.4 Why Not Just NAS?

Finally, we recognize that many supercomputing systems may (and should) be
architected to be reliable based on the guarantees provided by the parallel file
systems and NAS alone. While this may be the case, and in which case utilizing
the No-DN architecture may be the best choice, two potential use-cases exist for
layering Hadoop replication on existing NAS RAID: First, doing so dramatically
increases the reliability and up-time for files in an existing system that may only
otherwise provide RAID5; higher reliability may be desired for the post-processing
analytics so that chance of data loss for these final results is not only absolutely
minimal, but also not tethered to the capabilities of the system to rebuild quickly.
Second, layering Hadoop with replication on NAS also may make sense for smaller
supercomputing centers whom may utilize NAS systems from multiple vendors.
With such discrete namespaces, this would prevent the No-DN architecture from
operating, and therefore layering Hadoop in-between would enable one to execute
a MapReduce task to concurrently utilize all of the discrete NAS pools.

19

 0

 1000

 2000

 3000

 4000

 5000

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time Since Start (Minutes:Seconds)

Received
Sent

(a) Errant Pass-Through Write Transport Behavior

 0

 500

 1000

 1500

 2000

 2500

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time Since Start (Minutes:Seconds)

Received
Sent

(b) Errant Pass-Through Read Transport Behavior

Figure 2.3: Write-intensive and read-intensive benchmarks on 50-node cluster
and 5 NAS shelves, demonstrating poor write and read transport behaviors for
DN-on-Client architecture.

2.5 Data Locality and Transport
In this section we consider the impact of locality changes when moving away from
a traditional node-local Hadoop configuration to a remote storage solution.

2.5.1 Write Transport

Figure 2.2 provides an overview for each of the considered architectures on how
writes flow from MapReduce tasks to NAS. When the DN runs on the clients as
shown in Figure 2.2a, performance suffers significantly due to the errant network
transits. Because HDFS assumes that it is working with individual HDDs, it
believes there is no other way to get data to that HDD besides going over the
network to the client that supposedly contains it. However, when all of these local

20

HDDs are replaced with paths to remote storage, the storage becomes equally close
to all of the clients, and therefore an additional transit through some other node is
complete overhead. It would be better for the DN in client Node A to write both
replicas to separate NAS systems itself, but there is no way to effect this in HDFS
without significant changes to its codebase that handles topology. This inefficient
behavior is experimentally validated in Figure 2.3a, which shows that while writes
should solely result in network send-bandwidth from the clients to the NAS, high
receive-bandwidth is also occurring. In short, when we use HDFS with a replication
level of 2 (original plus one copy) atop NAS, we should expect one out of three of
the total network transits of the file to be overhead.

Moving the DN onto the NAS head nodes does not remove this errant pass-
through behavior for writes, as shown in Figure 2.2b, but it does have the potential
to alleviate it, depending on the relative link sizes available to nodes and connected
to the NAS systems. Specifically, while the client machines in our experiments solely
have a single Gigabit Ethernet link, each NAS system has two bonded 10 Gigabit
links available. Nevertheless, it is quite computationally expensive to manage many
tens, if not hundreds, of high-bandwidth, busy streams. This is a key issue we
run into; even with only 10 clients per NAS system stream management overhead
outweighs any benefits we gain from a higher theoretical peak performance.

In the third architecture, without HDFS shown in Figure 2.2c, there is no poten-
tial for any misunderstanding on how the storage is actually laid out – MapReduce
is operating directly on normal files served via NAS. This enables all accesses to
incur the fewest transits to maximize performance.

2.5.2 Read Transport

Reads seem considerably simpler than writes since no replication is performed
– one imagines that reads should go directly through the local NAS mount and
therefore avoid any pass-through situations. While this is true for our DN-on-NAS
node and No-DN architectures, this intuition was found to fall flat for the simplest
architecture of DN-on-Client.

We experimentally document the problem witnessed with our NAS on Client
architecture in Figure 2.3b, which shows that while reads from NAS storage via
HDFS should only show large amounts of received data, our per-node aggregation

21

shows significant amounts of sends as well. This phenomenon is the result of a task
being placed on a client node that the HDFS NameNode does not believe to have
the file that task operates on stored locally. Misplacement results in a request to
one of the other nodes that the NameNode does believe to have the file locally,
which starts a pull-through from the NAS system to the requestee and finally to
the requester. These sends reach as high as around 33% of the bandwidth of the
receives as shown in the middle of Figure 2.3b, indicating about a third of the tasks
were misplaced.

2.6 RainFS
As we have shown, there are considerable overheads when utilizing HDFS to access
NAS storage, yet bypassing HDFS entirely removes many of the reliability boons we
had previously enjoyed. Further, bypassing HDFS requires that the NAS systems
are capable of federation, which is not always the case, particularly with systems
from different vendors. Therefore, we decided to implement a solution that attempts
to avoid these overheads while concurrently retaining the ability to replicate over
discrete failure domains and provide client-level federation. To that end, we present
the Reliable Array of Independent NAS File System (RainFS), an intermediate
file-system to replace HDFS for MapReduce on NAS applications.

2.6.1 Design Desirata

The goals in the design of RainFS were four-fold:
1. Client-Level Federation of NAS Systems: Enable MapReduce to take advan-

tage of the performance of all of the available NAS systems concurrently and
maintain discrete failure domains.

2. Full Replication: Restore the ability to replicate files written in MapReduce.

3. No Data Pass/Pull-Throughs: Neither writes nor reads should ever go through
another client node on its way to or from the NAS systems.

4. A Fair Namespace: Create a framework-agnostic namespace where no imports
or exports are required.

22

2.6.2 Implementation Overview

RainFS employs two key mechanisms to achieve the aforementioned goals. The first
is utilizing symbolic links (symlinks) and hidden folders in order to allow a single
NAS system to manage the remaining NAS systems and present a fair, federated
namespace to MapReduce and POSIX applications. The second mechanism is
providing metadata management via hidden metadata files beside the symlinks.

RainFS allows the NAS systems to be unfederated at the storage-level and yet,
exposes a unified namespace, by maintaining that namespace on one of the many
NAS systems available to the administrator. In that managing-NAS namespace,
instead of storing the data directly when written from MapReduce, it stores symlinks
that lead to the data files in one of a number of distributed, hidden directories. It
is important to emphasize that the symlinks nor hidden metadata files are not on
individual, local clients, but on a single managing-NAS system such that all clients
see them in a unified manner. This enables concurrent reads on a set of files in
the visible RainFS file system to be load-balanced across many or all of the NAS
systems, depending on how many files are accessed at once. Further, this allows
an MPI or other POSIX application to read a MapReduce-generated file directly
from the symlink in the visible namespace of the managing NAS or to write its own
set of files and allow MapReduce to turn around and process those files directly
without import or export.

The second mechanism, metadata management via hidden files beside the
symlink, allows RainFS to manage these many hidden files and folders that the
symlink points to. As we will discuss in the following sections, there are numerous
consistency issues that must be addressed on file create, delete, and move, and
RainFS achieves all of this without its own centralized metadata manager.

2.6.3 File Operations

To enable easy adoption and code-reuse, RainFS extends from the abstract base
class FileSystem as provided in the Hadoop code. This makes it a sibling to other
FileSystem-extended classes like FTPFileSystem, where FTP servers are used for
storage, S3FileSystem, where Amazon S3 is used as the backing store, and even
HDFS, which also extends from the FileSystem class. Furthmore, for operations
that do not require special handling of symlinks or hidden file metadata (e.g.,

23

a mkdir), RainFS re-uses code from the RawLocalFileSystem class to provide a
similar range of operations available in other Hadoop filesystems. The operations
which do starkly differ in RainFS from those available in RawLocalFileSystem are
file creation, deletion, and move, and we detail them at length in this section.

2.6.3.1 Create

Algorithm 1 File Creation
1: procedure create(filepath, replication)
2: lock(filepath)
3: rndID ← rndGen.nextLong
4: nasStart← rndID mod nasCount
5: bucket← rndID mod 2bucketP ower

6: for i← 0, replication− 1 do
7: files[i]← buildPath((nasStart+ i) mod nasCount, bucket, rndID)
8: File.create(files[i])
9: end for

10: createMetaStore(filepath)
11: symLink(filepath, files[0])
12: unlock(filepath)
13: end procedure

Algorithm 1 creates a file by taking as parameters the path to the file and the
replication level desired. First, we utilize NAS file locking to create and lock a
hidden locking file beside the path of the symlink we are seeking to create. Since
MapReduce is designed for Big Data (and therefore fewer, larger files), we do not
believe a basic locking approach should have notable performance impacts on any
realistic workloads. We then generate a psuedo-random long integer and identify
both the first NAS system the symlink should point to as well as the bucket in
use. Since the first NAS is randomly chosen and then subsequent replicas are just
round-robined around available other NAS systems, the replicas will be uniformly
distributed. We utilize the concept of buckets, which are truly just folders, and
a configurable bucketPower, to ensure that it is unlikely that any single folder
becomes overwhelmed with a huge number of files. Without buckets, depending on
the NAS system in use, folders with a huge numbers of files could very well suffer
performance degradation.

Then we create each replica, iterating through the available NAS systems as
specified in the RainFS configuration file in round-robin fashion. Changing available

24

NAS systems is as simple as altering the configuration file, as it is read upon every
call to the RainFS library; no restart required. However, in similar nature to HDFS
files needing to be read and rewritten if the block size is desired to be changed,
RainFS does not yet provide capacity rebalancing if the replication level changes.
One will need to read, rewrite, and delete the old file to achieve rebalancing.
Following creation of the replicas the symlink to the first NAS is created and the
metadata information about the file is stored in a hidden file beside it.

Once the file is unlocked this procedure returns a new output stream for
subsequent writes. Writes occur simultaneously to all replicas via threading, one
thread per replica. This process is identical for subsequent writes sometime later
after the file creation. On read access, only the data file that the symlink points to
will be actually read from – reads are not performed concurrently from all replicas
available. However, MapReduce programs frequently work with multiple files
concurrently, so it should still achieve load balancing on read-intensive workloads
across all NAS systems. In future work we are considering improving the read
function so even single, huge files, are served from all available replica locations.
This achieves client-level federation of the NAS systems, allows for replication
all the way up to the number of NAS systems available, avoids transit overheads
for both writes and reads since each client directly contacts the NAS systems for
each of its I/Os, and maintains a namespace on the primary NAS system that
non-Hadoop applications can access.

2.6.3.2 Delete

Algorithm 2 File Deletion
1: procedure delete(filepath)
2: lock(filepath)
3: replicas← getReplicas(filepath)
4: File.delete(filepath)
5: for i← 0, replication− 1 do
6: File.delete(replicas[i])
7: end for
8: File.delete(filepath.metadata)
9: unlock(filepath)

10: end procedure

File deletion as shown in Algorithm 2 works in nearly reverse order as create,

25

and is done so with good reason: if intermediate failure occurs partway through
a creation or deletion, these routines are built to maintain a reasonably sane
environment even in the face of failures. Further, partial creates or deletes should
be easy to clean-up with this ordering by an independent, scanning RainFS checking
daemon. In the delete routine the file destined for deletion is locked via NAS file
locking as done with create and all of the replicas are determined from the metadata
file. Then, the symlink is removed such that any subsequent operation should
recognize that the left-over replicas should also be deleted. Finally, the replicas are
removed followed by the metadata file. The metadata file is left until last in order
to preserve information and expedite clean-up in the event of an interrupted delete.

2.6.3.3 Move

Algorithm 3 File Move
1: procedure move(filepath, newpath)
2: if filepath > newpath then
3: lock(filepath)
4: lock(newpath)
5: else
6: lock(newpath)
7: lock(filepath)
8: end if
9: updateMetaStore(newpath, filepath)
10: File.move(filepath, newpath)
11: File.delete(filepath.metadata)
12: unlock(filepath)
13: unlock(newpath)
14: end procedure

Last of the common file operations, file move, would be a tricky routine if it
were not for locks provided via NAS file locking. As we mentioned, providing
locks around the entire routine is a reasonable approach for creates and deletes
– as a Big Data framework, MapReduce was never designed for rapid creation or
deletion of huge numbers of tiny files. We find moves to also be satisfactory for
such routine-encompassing locks because we do not actually move the data, we only
move the symlink and the metadata file. This allows for a very short time to be
spent in the locked section compared to a full data copy and subsequent deletion
of the old data. Therefore, in the move routine, we lock both the target and the

26

source files in order to prevent any concurrency issues from arising. Once both
are successfully locked, we first update the metadata file at the target and then
and only then move the symlink to that target. Updating the metadata file at the
target first prevents the possibility of a partial move resulting in lack of a metadata
file alongside the new target symlink. Once the move is successful (metadata and
symlink), we then delete the old metadata file at the source location and unlock
both the source and target.

2.6.4 Failure Handling

The last consideration before experimentally comparing the performance of RainFS
against the previous architectures is reliability of RainFS in the face of failure of a
disk or rack.

First, just as in the other architectures, since it utilizes NAS storage, it gets
single- or double-disk failure tolerance based on the RAID level the NAS system
employs for every NAS system. However, unlike the architecture that simply
bypasses HDFS, RainFS achieves federation at the client-level and therefore the
fault domains among NAS systems are not conjoined. Concurrent failures in distinct
NAS systems will therefore not aggregate – for five NAS systems and RAID-5, five
disk failures can be tolerated without data loss in any of the failure domains if they
occur in separate systems.

Furthermore, if an entire rack becomes unavailable and RainFS is unable to
contact it for a read, it will simply iterate through the remaining replicas to attempt
transfer from a NAS system on another rack. A notable caveat here is that the
master NAS is a single point of failure; if it fails the unified namespace will be
unavailable until it is restored.

Beyond what RainFS can promise in the face of failure or unavailability of one
of the NAS systems, we must also briefly consider how consistency is maintained.
We make one important assumption in this work to simplify RainFS and keep it
out of the critical path for non-MapReduce applications: if a file is created via
Hadoop, the user should take care to also delete it or move it with Hadoop. Users
can of course (as it was one of our goals) read from those files using any application
they wish, be it MapReduce-based or not. The reason behind this assumption is
that since RainFS is solely in Hadoop, if an external user or application moves a

27

Component Description Per-VM
Processor Intel Xeon E5240 2 Cores
Memory DDR2 667 MHz ECC 3.8 GB

Hard Disk Sata II 7,200 RPM 200 GB
NIC Unknown Card 1 Gb/s

Table 2.2: Hardware and VM resources

symlink in the unified namespace, RainFS will not be able to keep up and move
the metadata file along with it. Similarly, external deletions of symlinks will leak
storage since the metadata files and replicas still remain in hidden folders on the
distributed NAS systems. This RainFS checker similarly attempts to complete or
roll-back partial creates, deletes, and moves after a specified time-out. Improving
the RainFS checker to be more robust beyond these capabilities is a target in future
work.

2.7 Evaluation
We now describe our experimental environment, the benchmarks we used to tease
out differences between architectures, and provide results for and discussion on our
experiments.

2.7.1 Experimental Setup

To experimentally validate our expected overheads and proposed optimizations
we used a medium-sized cluster of 50 nodes, which utilize five shelves of Panasas
ActiveStor 12. The nodes have Gigabit NICs, which are connected to one of four
Force10 S50n Gigabit switches. These switches are in turn connected by dual
10-Gigabit Ethernet uplinks to a single Force10 S4810p 10-Gigabit switch, which
our NAS system is also connected to via two, 10 Gigabit Ethernet links bonded
together per shelf. Each node is running KVM with a virtual machine image of
CentOS 5.5, which is the environment for all of our experiments. Further specifics
regarding the hardware is listed in Table 2.2. We required virtualization in order to
take advantage of the Panasas DirectFlow client module, which at the start of this
work was solely available for RedHat-based distributions and our hosts run Debian.

28

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

TeraGen TeraValidate

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

DN-on-Client DN-on-NAS No-DN RainFS

(a) Replication Level 1: Write- and Read-Intensive

 0

 50

 100

 150

 200

 250

 300

TeraSortT
h

ro
u

g
h

p
u

t
(M

B
/s

)

DN-on-Client

DN-on-NAS

No-DN

RainFS

(b) Replication Level 1: Mixed

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

TeraGen TeraValidate

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

DN-on-Client DN-on-NAS No-DN RainFS

(c) Replication Level 2: Write- and Read-Intensive

 0

 50

 100

 150

 200

 250

 300

TeraSortT
h

ro
u

g
h

p
u

t
(M

B
/s

)

DN-on-Client

DN-on-NAS

No-DN

RainFS

(d) Replication Level 2: Mixed

Figure 2.4: User-perceived throughput of read-, write-, and compute-intensive
benchmarks on a medium size cluster using all four architectures. Shown for
replication level of 1 and 2 (where 1 means only the original data file exists, and
2 means two copies exist within the NAS systems). The No-DN architecture, or
where neither HDFS nor RainFS is used at all, cannot replicate and therefore is
missing from the bottom graphs.

2.7.2 Benchmarks

Perhaps the most ubiquitous macro-benchmark in the Hadoop space is the TeraSort
benchmark, which is a suite of MapReduce applications designed by Yahoo! in
2008 [32] designed to compete in (and enabled them to win) the terabyte sort
competition [33] that year. The three major components of the benchmark are:
TeraGen: The first component of the suite is TeraGen, an application that
utilizes MapReduce to automatically divide the work of generating a configurable
number of rows of key/value pairs over available clients. This benchmark is almost
exclusively write-intensive and therefore, is used in this work as our write-throughput
microbenchmark.
TeraSort: The second component is the most complex and performs the sort
itself. TeraSort incorporates a custom partitioning algorithm that uses a sorted
list of N − 1 keys. This enables a simpler, nearly embarrassingly parallel sort
that correspondingly scales well. It has a read- and CPU-intensive Map-phase, a

29

network- and memory-limited shuffle phase, which shares the now-partially-sorted
data, and last performs a write-intensive reduce phase, where the data is merged and
outputted to disk fully sorted. Because it exhibits a full spectrum of MapReduce
application behavior, we consider this component of the suite representative of
more compute-heavy applications.
TeraValidate: The last component of the TeraSort benchmark suite is the vali-
dation application, which simply reads through the entire set of data and makes
sure each key is sorted properly (it is less than or equal to the one previous). This
benchmark, barring any errors (we encountered none in any of our tests), is com-
pletely read-intensive and therefore is used as a read-throughput microbenchmark
in this work.

This benchmark exhibits the behaviors we expect most HPC post-processing
analytics will exhibit. For instance, it is easy to imagine a scientist would first
simulate a nuclear reaction using traditional HPC compute and storage. Then, they
might seek to leverage a big data framework such as MapReduce as explored in
this work to do a light filtering of the data, which might generate an only slightly
smaller dataset (like the write-heavy TeraGen). Then they may sort to find areas
with the highest or lowest temperatures (like TeraSort), and last look through all
of the sorted data to verify no anomalies exist (like TeraValidate).

2.7.3 Results

Having laid out our experimental framework and the Hadoop TeraSort benchmark
suite we utilize for this work, we begin our discussion of results by first presenting
a basic overview of the parameters we configured for the TeraSort runs. In these
experiments we first write 0.5TB of data using TeraGen and then sort that data
using TeraSort, which generates a separate 0.5TB of data. Finally, we read in
and validate that the second 0.5TB dataset was truly sorted using TeraValidate.
Additionally, for all of our runs, we execute each benchmark three times in order
to find a reasonable average. With half a terabyte, each machine is writing at least
twenty gigabytes of data over the course of the benchmark suite and reading the
same amount, making this a considerably out-of-memory dataset. Nevertheless,
we take precautions against cache-effects by flushing the cache on all of our client
nodes.

30

As a last consideration, we utilized the local HDD in each machine as the
temporary storage space for MapReduce during its shuffle phases. This decision
was made after thorough testing of entirely NAS-based setups, where no local disks
were in use for the benchmark. In those we found performance to be much better
when keeping temporary data local to the machine itself rather than pushing it
out over the network to remote storage and subsequently pulling it back when
needed (often very soon after the push). We believe utilizing a single local disk
for temporary shuffle data does not jeopardize the intent of our exploration for
two reasons: First, no permanent data stays on that disk and thus the reliability
guarantees that HDFS and/or NAS promise are not in danger. Second, while not
all HPC systems have a local disk (some boot simply over the network), many do,
including current #1 Top500 Tianhe-2 [34], and almost all others provide some
form of solution for a fast scratch space even if it is remote.

Moving to the results, let us first consider the write- and read-intensive bench-
marks for replication levels of 1 and 2 as shown in Figures 2.4a and 2.4c. In the
former, three main take-aways surface: First, DN-on-NAS runs into significant
performance degradation for writes – it only begins to compete with any of the
other architectures on reads, and that is because the DN-on-Client architecture
begins to suffer from poor task placement (resulting in data pull-through). Second,
and related, the impact of this errant data pull-through phenomenon resurfaces for
TeraValidate in the DN-on-Client architecture. While performance improves for the
No-DN and RainFS architectures when going from writes to reads, performance
plummets for reads on the DN-on-Client setup. Third, the No-DN and RainFS
architectures perform almost identically in all tests. This is a result of both of these
architectures being based off of the same code-base, which performs I/O almost
directly through standard Java I/O libraries.

In the latter set of read- and write-intensive benchmarks performing duplication,
we note two points of interest: First, the DN-on-NAS node architecture performs
even worse than in the previous case, achieving less than 10% of the theoretical
throughput available to the NAS systems. This seems to make a fairly cogent
case against pigeon-holing a distributed data framework like Hadoop MapReduce
through a limited number of master nodes; it simply will not scale or achieve
higher replication levels well once those nodes are overwhelmed. Second, since the
No-DN architecture, or the architecture that skips both HDFS and RainFS and

31

goes directly to NAS, cannot perform any replication, it is missing from this graph
intentionally to accent the reliability/performance trade-offs.

Now examining the compute-intensive benchmark TeraSort as shown in Figures
2.4b and 2.4d, the findings are somewhat less striking but nevertheless fit intuition.
First, because this benchmark is running on simply dual-core machines with limited
main-memory, we should expect any improvements in storage access speed to only
improve a limited fraction of the run time. This is demonstrated with much smaller
swings from the worst to the best in the architectures. Further, DN-on-NAS node
finally takes a win in this case because the DN responsibilities have been moved off
of the compute nodes, allowing them to move faster, and I/O is not the bottleneck.
Last, No-DN performs almost identically with RainFS for replication level of 1,
and is excluded from replication level of 2 for the aforementioned reasons.

 0

 0.5

 1

 1.5

 2

 2.5

 3

TeraGen

R
e
la

ti
v
e
 S

lo
w

d
o
w

n

DN-on-Client

2.02

DN-on-NAS

2.38

 RainFS

1.52

Figure 2.5: Throughput impact on write-intensive work-
loads when going from replication level of 1 to 2.

Lastly, we analyze
this performance data
in Figure 2.5 to deter-
mine how the various
architectures fair when
increasing replication
level. As the simplest
architecture matches
up with, our intuition
suggests if twice the
amount of data is be-
ing written, then the
slow-down should be
two times. However, DN-on-NAS fairs worse than this number, coming in at
2.38 times slower and RainFS fairs better, showing only a 1.52X slowdown. In
the former case, we believe this to be related to the already overburdened NAS
node slowing down further as it continues to struggle with more high-throughput
network streams. However, for RainFS we were initially quite unclear as to how it
performed better than in the replication level 1 case. What we have found through
microbenchmarks and careful observation of the test as it runs is that since RainFS
makes use of threads to write both of the copies simultaneously when replicating,
it is able to hide some of the overhead in the I/O path and the other stream of

32

data fills in that space while the initial one idles.

2.8 Related Works
Despite the huge volume of work done in the cloud computation and parallel file
system arenas, there are only two academic works to our knowledge that seek to
find an efficient coexistence between them, and both are just short papers reporting
research that is still in progress.

In the first work, MixApart [35], the authors create a new task scheduler and
caching manager that relies on local HDDs to perform staging of data brought from
shared storage. Their work does no exploratory research into whether standard
incarnations of Hadoop are possible atop shared storage nor does it appear to
operate without powerful compute-local storage, and therefore one of the major
incentives for our work, infrastructure conslidation, becomes impossible. Last, there
is no consideration of storage reliability or improving federation capabilities in their
work; they rely on whatever the underlying shared storage can provide.

In the second work [36], the authors perform a comparative study of unmodified
Hadoop MapReduce on HDFS versus a modified version of GPFS. Unlike our work,
where we seek from the outset to use MapReduce on function-specific dedicated
storage, this work attempts to retain the merged infrastructure of Hadoop where
compute and storage share the same machines.

In the commercial space, EMC Isilon and NetApp have released products
that perform, to one degree or another, actions similar to two of our explored
architectures. In the former case, EMC Isilon provides their solution, OneFS
[37], which exports a wire-protocol version of HDFS but that translates HDFS
commands extensively into Isilon-specific data movement in the back-end. Our wire-
protocol architecture (DN-on-NAS node) has parallels with this setup, although
the exact implementation is not equivalent. In the latter case, NetApp provides
their OpenSolution for Hadoop [38], which enables individual compute nodes in
the Hadoop cluster with SAS-attached storage instead of their own commodity
HDDs. This methodology has some parallels to our DN-on-Client setup, except
we utilize NAS storage rather than directly-attached storage. These commercial
implementations of architectures similar to ours were part of our motivation to
explore this arena and try to bring some clarity about the benefits and pitfalls

33

of the various approaches to integrating Hadoop MapReduce and shared storage
solutions.

2.9 Conclusion
As an increasing number of organizations and researchers in HPC begin to take stock
of their I/O intensive workloads and consider a Hadoop environment, particularly
for ad-hoc analytics and post-processing, we believe our work has shed light
on the potential to combine new compute frameworks with traditional storage
infrastructure. In this paper we have detailed the numerous reliability implications,
locality impacts, and caveats involved in utilizing three different architectures to
effect MapReduce atop NAS with standard software. We have further designed and
presented RainFS, our custom Hadoop File System that works to overcome the many
pitfalls observed in the previous architectures. Finally, we have compared these
architectures along the dimensions of reliability and performance on a real cluster,
and demonstrated performance improvements for RainFS as high as 127% for write-
intensive workloads and 217% for read-intensive workloads for replication level 1,
and as high as 254% for write-intensive workloads and 210% for read-intensive
workloads when performing duplication to achieve higher reliability guarantees.

34

Chapter 3 |
Data Reduction: Scalable Dedu-
plication and Compression Eval-
uation

3.1 Introduction
In the increasingly bandwidth-starved present and particularly, future, it is critical
to extend our search for solutions to this problem beyond merely bringing all of the
storage devices together. Specifically, in this chapter we explore the potential for
reducing the space occupied by the data itself, without compromising the content
in any way. When we discuss data reduction in this work we refer to the use of
techniques to take the current representation of data, find patterns or redundancies
in the data, and re-encode the data in a way that more cheaply (capacity-wise)
expresses the original bits.

There are two well-known approaches to data reduction: compression and
deduplication. NOTE: Some consider deduplication a compression technique. For
sake of clarity, in this work we discuss them completely separately and beneath the
broader umbrella of “data reduction.”

Compression is a technique that attempts to search through data and build a
dictionary of frequently-occuring sequences, and rewrite the data using the new
dictionary. More frequently occuring sequences receive a symbol that occupies less
bits, and less frequently occuring sequences receive more expensive symbols. For
instance, the letter E, which has a relative frequency of 12.702% of the words in the

35

English language, stands a good chance of receiving a very low-bit count symbol
to represent it in an English plaintext document. Numerous implementations of
compression exist and are used on a daily basis, such as zip [39], gzip [40], bzip2 [41],
cab [42], 7zip [43], and rar [44], and less commonly but more powerful, transparently
compressing filesystems exist such as BTRFS [45], ZFS [46], and NTFS [47]. In
this work we concentrate on the latter, transparently compressing filesystems, since
that is the most readily applicable for the large data pools we focus on here.

Deduplication, on the other hand, performs data reduction at a much higher
level. Instead of looking at a window of data within a single file to improve just that
one, deduplication looks for relatively large sequences of data (many kilobytes) that
occur multiple times within and across files in a file system. These redundancies
are removed when detected, and only an origin reference to the data sequence is
retained. All other copies of that data sequence merely maintain a pointer to the
origin. As an example, whole files copied are a classic example where even the most
basic form of deduplication will work marvelously, whereas compression would not
work nearly as efficiently. While deduplicating file systems exist, such as ZFS [46],
BTRFS [45], and LessFS [48], and commercial solutions such as NetApp’s ONTAP
Operating System [49], EMC Data Domain Deduplication Storage Systems [50],
and Windows Server 2012 [51], because these solutions must be leveraged for the
entire filesystem they are not nearly as commonly employed as compression.

While compression and deduplication techniques are well researched and imple-
mented (particularly the latter), two large hurdles exist to properly implementing
one or both on the large datasets. First, some datasets benefit from compression,
some from deduplication, some from both, and a few benefit from neither. Blindly
implementing both compression and deduplication on a dataset that is already
bandwidth constrained stands a very good chance of further limiting its bandwidth
since data now must be decompressed to be accessed and deduplication memory
requirements can be severe. Therefore, it is critical to evaluate ones dataset on
these techniques (and their many implementations and tunables) beforehand.

Unfortunately, particularly for large pools of data that would benefit in an
absolute sense the most from these techniques, there is no freely available analysis
toolkit available today that lets you know how much your data will benefit from
compression or deduplication. While one might be able to guess at the intrinsic
nature of his or her dataset and which technique it might benefit most from, for

36

larger pools of data this guessing-game becomes arduous and inaccurate. Current
approaches require one to either enable compression or deduplication on your
production filesystem (if it even supports it), or to copy the entire dataset onto a
filesystem that supports compression and/or deduplication, and observe the overall
change in capacity. The former may make the production dataset unavailable for
sometime or extremely slow as the filesystem adapts to the change, either of which
are rarely acceptable on production storage systems. With the latter approach,
this becomes extremely expensive if not downright intractable: separate storage
resources must be acquired, high-throughput network links must be established to
copy the data in a reasonable fashion, and because of the tunables that impact the
efficacy of both compression and deduplication, numerous iterations of copy and
delete may be needed to reach the ideal setup. Moreover, one must commit to a
specific vendor before performing a proper cost/benefit analysis on one’s data to
ascertain which compression and deduplication techniques best benefit the data at
hand.

Therefore, in this work we seek to design, implement, and demonstrate the
efficacy and accuracy of a scalable compression and deduplication evaluation toolkit
named TreeChunks. We established three main design desirata for this work:

• In-Place Data Evaluation: The tool should be able to evaluate the data
in-place, without any copies to another filesystem. Further, any temporary
data generated should be small enough to reasonably fit on existing storage.

• Practical Scalability: It should be able to operate on large amounts of data
in parallel and without memory constraints, and be able to utilize existing
nodes connected to the storage system for processing rather than require
specialized or tightly-coupled machines.

• FOSS and Well-Documented: TreeChunks should be Free and Open Source
Software provided online and include detailed documentation along with
examples to make adoption and use of the toolkit painless. Moreover, results
should be anonymized and be able to be easily uploaded to a central website
where knowledge about the impact compression and deduplication on various
datasets can be aggregated for future research.

We demonstate in this work an implementation of these high-level design goals
that allows one to evaluate existing data pools, even very large ones, at high rates

37

and in-place. This data reduction analysis toolkit, TreeChunks, adds a completely
novel tool to the repetoire of system administrators and researchers to properly
examine their datasets.

We layout this work in the following sections: First, we provide a more thorough
background on compression and deduplication to aid the reader in understanding
the differences, and then proceed to related works in the area that have furthered
the development of compression and deduplication algorithms. Second, we detail
more specific design goals we had for the TreeChunks toolkit, and enumerate the
features the toolkit supports. Third and last, to provide examples of the tool,
we use it on a medium-sized dataset replete with a wide-variety of file types to
demonstrate the efficacy and features of TreeChunks.

3.2 Background
Compression and deduplication, while well-established techniques (especially in
the case of the former), are rarely well-understood. Therefore, in this section, we
provide further detail on how exactly compressors and deduplication algorithms
work in order to aid the reader in understanding the specifics and differences
between the two approaches, cite key papers in both categories, and list existing
tools that explore these techniques and their differences from ours.

3.3 Compression
Compression tools such as Zip, Gzip, and Bzip2 provide compression and decom-
pression facilities for Windows and *nix users. While different implementation-wise,
they share a common history in the DEFLATE algorithm [52], which is comprised
of both Huffman encoding [53] and LZ77 encoding [54].

Huffman encoding searches through a series of characters and replaces the most
common ones with special bit representations. These “bit representations” can be
termed symbols, and with Huffman encoding the most frequent ones are represented
with the cheapest (i.e., lowest bit count) symbols, whereas the least frequent ones
are replaced with the most expensive (i.e, highest bit count) symbols. For instance,
given a string “AABBBCCCC” we can see the character C is the most frequent, B,
is second-most frequent, and A is least frequent. Therefore, Huffman encoding will

38

build a symbol table where C requires the least bits and A the most. The string
is then replaced with metadata including this table in the header of the string,
and then the string itself. For this simplified example the table representation will
outweigh the benefits, but for real files the benefits can be highly significant.

LZ77 encoding approaches compression from a different angle, recognizing that
certain characters might have a repeating nature. Also known as “Run-length
encoding,” LZ77 encoding finds repetitions in the last N characters and replaces
them with special codes indicating pattern and length. For instance, in the stream
“Hello hello hello” the “ello h” component just following the capital “H” is the
first repeating string. Therefore, when LZ77 encoding finishes with this string, it
will produce something akin to: “Hello h[D=5,L=10]”. The bracketed component
specifies the distance back (D) the repeating sequence should start at, and the
length said sequence should continue for (L) at the point of the component.

These descriptions and examples gloss over many of the details of powerful com-
pressors, so, for more information, please reference [55]. While many compressors
share the same heritage in Huffman and LZ77 encoding, resulting implementa-
tions vary wildly in terms of compression ratio, compression performance, and
decompression performance [56]. As a very general rule of thumb, more com-
plex and longer-running compression algorithms tend to compress files to smaller
sizes and across a broader spectrum of file-types. Deciding whether to go with
a high-throughput or high-compression algorithm (or a balanced algorithm or
configuration) depends largely on the dataset and use-case at hand, which our tool
sheds light on.

Furthermore, compressors and decompressors used in filesystems often vary
from the per-file tools, enabling a richer set of mechanics. Examples of these include
checking to see if the file fails to compress to a smaller size, and if it does not,
falling back to traditional storage (so as to avoid the decompression cost) [57]. Also,
maximum chunk sizes tend to be specified such that very large files (in the hundreds
of MBs or GBs) need not be compressed in one expensive run (or decompressed
and recompressed entirely upon change). Lower chunk sizes allow more flexible
and cheaper manipulation of files without decompressing the entire thing, but can
have a significant impact on overall compression ratio as shown in Figure 3.1. In
this figure we explore how a plaintext file compresses when split into smaller and
smaller chunks, beginning with full-file compression, and moving down to 1KB. For

39

Figure 3.1: Demonstrating the impact of aggregate compression ratio when a text
file (plaintext version of “The Brothers Karamazov” in this case) is chunked into
smaller components. Full-file achieves best compression, but even at a 128KB
chunk size near-optimal compression is achieved. Overlaid bar chart – blue is the
absolute compression ratio, red is the relative compression ratio.

example, when compressing at the level of a single sector on newer HDDs (4KB),
one forsakes approximately 20% efficiency in compression to achieve a far easier to
decompress (and recompress) file.

3.4 Deduplication
The simplest form of deduplication is full-file deduplication, which Windows has
supported in the form of Single Instance Storage (SIS) since 2000 [58]. This form
of dedupe can be achieved extremely simply by storing just a lookup table with file-
lengths and checksums, and upon match of both for a new file being written, perform
a byte-by-byte comparison of the two and remove the duplicate. The largest issues
with this tactic is that a) byte-by-byte comparisons are extremely expensive and b)
even a single byte change in one of the files requires a full file copy (undeduplication).
Nevertheless, researchers in [58] have argued that this simple tactic captures the
majority of duplicated files compared to more complex approaches as we now

40

describe. Again, this is heavily use-case dependent – researchers in the former work
are looking at a very specific data pool that happens to have numerous identical
copies of files, which may not be common case.

To understand the more complex incarnations of deduplication that deduplicate
at a sub-file granularity, it is critical to identify the two main issues involved:
Duplication detection and file segmentation. The first issue seems simple – two
lengths of data are the same if all of their bits match – but avoiding the need to read
the file numerous times, which we have identified is expensive due to bandwidth
bottlenecks, is key. For instance, in the above simple full-file deduplication we avoid
blindly reading every file by using the heuristic that the file-length and checksum
must match first. We only read a file which meets those criteria. If we could
stomach the data-loss risk, we might be able to just say the files are identical if they
have equal lengths and checksums. However, this is not safe enough, and therefore
we cannot tolerate the risk.

Therefore, statistical approaches have been arrived at to cope with this, using
cryptographic hashes over the data to provide extremely low probabilities of hash
collision. The most commonly used hashes are MD5 [59], SHA-1 [60], and SHA-
256 [61]. For the latter, SHA-256, which has the lowest chance of collision, given
an exabyte of data and comparisons of every 8KB, we would encounter a collision
about 1 in 1040 hashes [62]. Since a hard drive may read and return data that
passes checks, but in reality has been corrupted, has a 1 in 1020 chance, it is widely
accepted that SHA-256 provides more than enough safety. However, common
practice (since most data pools are under an exabyte anyhow) is to adopt SHA-1
instead, which is much faster to calculate, since it provides 1 in 1020 chance of
collision [62].

If we can accept that cryptographic hashes are good enough such that we no
longer need to read a sub-file segment more than once and generate a hash for it
that is used until changes are made, the next problem is deciding how to divide
a file. In this work we term this “file-segmentation,” or just segmentation, and
the simplest approach is simply static segmentation. Static segmentation is the
division of files every so many bytes (e.g., every 8KB). It is important to point out
that small segment sizes are a double-edged sword: they concurrently allow for
less affected segments on changes and better deduplication potential, but in turn
require a much larger look-up table for the hashes compared to larger segments or

41

full-file hashes. This is particularly critical since lookup tables should ideally be
in-memory. For example, 2KB segment sizes for 8TB of data without duplicates
and 160-bit SHA-1 hashes will result in a lookup table reaching nearly 100GB,
whereas moving to around 16KB requires a far more tractable 10GB of memory.

This solves the second problem from the simple full-file deduplication that small
changes to a file will require full copies; now only the affected segments need to
be copied and linked. However, what happens on a mid-file insertion? Since the
bytes following the insertion all shift, this in turn results in distinct hashes for all
subsequent segments, and indeed an insertion at the beginning of a large file results
in a full file copy, which is needlessly expensive.

This brings us to a dynamic segmentation scheme that works to cope with these
scenarios. Dynamic, or, “content-based” deduplication, must have the following
qualities to be robust: we still must be able to control average size of segments, and
it must deterministically choose split points. While numerous schemes exist, the
one we’ll cover in this work is called Rabin Segmentation, and is built upon research
performed by Micahel O. Rabin in 1981, where he showed a new way to generate
public keys [63]. In this work he uses randonly chosen, irreducible polynomials to
fingerprint bit strings, which protects against unwanted changes being made to the
data without knowing. This was repurposed as a content-based file segmentation
scheme, and thus was born Rabin segmentation.

We lack space to properly address Rabin segmentation in this work, but a very
high level version of the algorithm is as follows: First, slide a fixed size window
(sized small, often 32-64 bytes) along the bit string and as each new byte enters the
window, recalculate the Rabin hash. If the last N bytes of the window are zeros
mark this as a segmentation point. The average segment size will be 2N bytes, and
usually minimum and maximum segment sizes are used for efficiency, which skew
the average segment size a tad larger. This content-based deduplication solves the
problem of insertions shifting all later bits because subsequent split points with
the exception of segments very close to the insertion will remain the same, and
therefore the hashes of those segments will remain the same. Only a very small
window of bytes around the insertion will be copied and hashed as “new segments.”

42

3.5 Design of TreeChunks
There are a number of design desirata we identified for TreeChunks to enable real
users in the system administration and storage research and engineering spaces
to best leverage it. These design goals can be grouped into three main categories:
configurability, performance, and visualization. We break-down these categories as
follows:

First and foremost, we wanted TreeChunks to be highly configurable, which
means

• Enable/Disable Compressors/Deduplication Algorithms: Users should be able
to turn off all compressors or deduplicators at-will, or decide which to test on
their data at an individual level.

• Compressor Tunables: Internal compression configurations make a significant
impact on performance and compression quality, so configuration decisions
such as chunk sizes and compression levels should be allowed to be iterated
over.

• Deduplication Tunables: Internal deduplication configuration choices such
as average segment sizes, Rabin window sizes, and minimum and maximum
segment sizes should all be selectable by the user.

• Responsive Performance Throttling: Since these executions may be running
on machines needed for day-to-day operation and on storage systems similarly
needed more during the day, administrators should be able to throttle the
number of threads executing on a machine in real-time by just changing the
configuration file.

• Granularity of Statistics Generation: Broad overview statistics will always be
generated and presented, but more fine-grained and expensive statistics such
as file extension frequency and volume should be able to be turned off.

• Enable/Disable Visulization: Graphs depicting directory structure and sizes
will only be useful under certain conditions, and therefore, given how expensive
it is to generate them, these should similarly be able to be turned off.

43

In TreeChunks we provide all of the above configuration features and describe them
in more detail in the man file.

Second, because testing a variety of compressors over a spectrum of compressor
tunables and deduplicators over a spectrum of deduplicator tunables rapidly becomes
an expensive effort, we wanted to make sure absolute performance was achievable
if the resources were available at hand:

• Scale Up: Since most machines today are multi-core, we wanted to assure
even if a specific compressor did not support multi-threading, TreeChunks
would keep as many processors busy as configured. This is achieved via lock-
protected queues of files and permutations of compressors and deduplicators
and tunables, a master thread which distributes work, and worker threads
that take jobs.

• Scale Out: More even than multiple cores, we also wanted to enable multiple
machines to be able to work on the data (provided the data is hosted in a
centralized location such as a NAS) for processing as well as I/O performance.
This is achieved by manual pre-division of the dataset right now, but dynamic
auto-division is a planned future work.

• Single Read: Since bandwidth is such a limiting factor, we want to make
sure once a file is read, all possible tests are performed on it possible before
moving onto the next one (or even the next chunk). This is achieved via
read-ahead buffering, and no re-reads are ever performed in TreeChunks.

In practice we have demonstrated performance efficacy of TreeChunks on 12 64-core
machines, each connected via 10Gbps Ethernet to five shelves of Panasas ActiveStor
12. Because of the embarassingly parallel nature of TreeChunks it was able to push
the storage subsystem to a peak I/O rate in excess of 5GB/s, and there was no
clear indication that, given more machines, we couldn’t have pushed the storage
system to its theoretical limit of 7.5GB/s. It was still CPU-limited at that juncture.
These performance characteristics give administrators and researchers the ability to,
if they have the resources available, execute very heavy analyses over the weekends
and evenings, and scale back the executions even in real-time during the weekdays
so the compute machines and storage systems aren’t affected for users.

44

Last, tree-based visualization of the impact each of these techniques and config-
urations has on the underlying file structure was a critical asset we wanted to add
to TreeChunks:

• Graph and Node: The tree-based graph generated by TreeChunks visualizes
subdirectories radiating out from the root folder, where edges are connections
between parent and child directory, and nodes are directories themselves. No
files are shown.

• Relative Size: The size of the directories contents, or immediate child files, is
represented visually with varying sizes of nodes in the following categories:
tiny (sub-KB), small (KBs), medium (MBs), large (GBs) and huge (TBs and
up). All of these sizes are represented before any compression or deduplication
is performed.

• Data Reduction Efficiency: To indicate how well the data in these directories
are compressable or benefit from deduplication, we use white to indicate
no improvement, cold colors (e.g., light blue, light purple) to indicate very
small capacity savings, and hot colors to indicate high capacity savings.
This provides a visually obvious categorization of subdirectories indicating
which parts of the filesystem benefit most from different configurations of
compression and deduplication.

This visualization is most-geared towards the system administrator who is using
this tool to derive useful, reality-grounded knowledge from the dataset on his or
her storage system. By having access to this type of a graph, he or she might
be able to identify (the not-so-uncommon scenario) that most of the data under
one arterial branch of the filesystem benefits greatly from compression whereas
another does not, which might lead him or her to advise management that only
enabling compression on that subdirectory is wise to achieve maximum benefit at
minimal compressor overhead. Similarly, he or she might be able to identify that
deduplication or compression is the clear winner, and have fruitful discussions with
management that visually depicts why in a way that is connected to the filesystem’s
use by the organization.

TreeChunks is maintained at its website1 and serves as a powerful tool re-
searchers, engineers, and system administrators alike can use to extract knowledge

1www.ellisv3.com

45

that would be otherwise extremely costly to derive from datasets at their disposal.

3.6 Exemplary Evaluation
To highlight the aforementioned design goals and resulting features of TreeChunks
we provide an exemplary evaluation of a medium-sized user dataset. This data
is from a home-based NFS server containing a wide variety of files, including,
but not limited to, operating system images in ISO format, backups in already
compressed format, code in ASCII format, compiled code, large ASCII data files
from experiments, music files in both FLAC and OGG formats, a large repository
of academic papers in ASCII, PDF, and DVI format, various office documents in
spreadsheet and ODF formats, and a large picture and video collection in JPEG
and raw Canon image formats. This data occupies roughly 388GB of capacity
as reported by the Unix “du” command. Because it is from a single personal
collection, this data is not intended to be representative of the nature of any
broader storage use-case, but due to the diversity of the data, breadth and depth of
the directory structure, it serves well to illustrate the various features of the tool.
Nevertheless, by allowing aggregation of results on the hosting website, we hope
that in the near future a much broader spectrum of dataset analyses will be made
public and broader conclusions about the nature of data and compression and/or
deduplication’s efficacy on said data can be arrived at.

As previously mentioned, TreeChunks is divided into two components, specifi-
cally, the Chunker and the Stacker. Chunker is the first component to be executed,
and it is wholly written in C code since it does the majority of the computation. It
is configured via a configuration file, usually “treechunks.cfg” in the same directory
as the execution is begun. Please see the man file for more information on the
configuration file syntax and features.

The master thread in Chunker first walks the entirety of the filesystem directory
structure, and begins to build two queues. The first queue is a queue of sub-
directories that still need to be traversed by the master thread in breadth-first
fashion, and the second is the file queue that workers can pull files off of to work
on. Once the file queue begins to be populated with files by the master thread, the
worker threads immediately begin to lock, pull a file off of the queue for processing,
and unlock the queue. Because of the far longer running nature of the processing of

46

the files compared to the lock, retrieve, and unlock process, simple mutexes more
than suffice for this function.

Exemplary execution of Chunker is as follows:
$. / chunker −v − i /mnt/ s t o r e / −o /mnt/ s t o r e / . a_chunk_data/
======================== START INPUTS ==========================

General Inputs :
s t a r t_d i r : /mnt/ s t o r e /
out_dir : /mnt/ s t o r e / . a_chunk_data/

Rate−Limit ing Inputs
threads : 8

Active Compressor Inputs
chunk s i z e : 16384
chunk s i z e : 131072
z l i b l v l : 3
z l i b l v l : 9
l z o l v l : 1

Active Segmenter Inputs
s t a t i c seg s i z e : 16384
s t a t i c seg s i z e : 131072
rabin_window : 48
rabin_avg_seg : 16384
rabin_min_seg : 8192
rabin_max_seg : 32768
rabin_window : 48
rabin_avg_seg : 131072
rabin_min_seg : 65536
rabin_max_seg : 262144

======================== END INPUTS ==========================
Sta r t i ng Up Thread ID : 1231275776
S ta r t i ng Up Thread ID : 1239668480
S ta r t i ng Up Thread ID : 1256453888
S ta r t i ng Up Thread ID : 1248061184
S ta r t i ng Up Thread ID : 1222883072
S ta r t i ng Up Thread ID : 1140848384
S ta r t i ng Up Thread ID : 1132455680

47

TreeWalk : Begin at 1399299740
path : /mnt/ s t o r e // data
path : /mnt/ s t o r e // s s c h o i c e s
path : /mnt/ s t o r e // panasas
path : /mnt/ s t o r e // l o s t+found
path : /mnt/ s t o r e //music
path : /mnt/ s t o r e // audio
path : /mnt/ s t o r e // a r ch i v e s
path : /mnt/ s t o r e //backup
path : /mnt/ s t o r e // sw i t ch ing_re su l t s . ods
path : /mnt/ s t o r e // g a l l e r y
path : /mnt/ s t o r e //documents
path : /mnt/ s t o r e // code
path : /mnt/ s t o r e // p i c t u r e s

. . . output snipped . . .

TreeWalk : Complete , took 1252 seconds .
(757 / 168065) [1132455680] Proce s s ing f i l e : /mnt/ s t o r e //

p i c t u r e s /widener /DSCF1010 .JPG . . .
(758 / 168065) [1256453888] Proce s s ing f i l e : /mnt/ s t o r e //

p i c t u r e s /widener /IMG_3538 .JPG . . .
(759 / 168065) [1256453888] Proce s s ing f i l e : /mnt/ s t o r e //

p i c t u r e s /widener /FREEDOM 022 .JPG . . .
(760 / 168065) [1132455680] Proce s s ing f i l e : /mnt/ s t o r e //

p i c t u r e s /widener /120 .JPG . . .
(761 / 168065) [1256453888] Proce s s ing f i l e : /mnt/ s t o r e //

p i c t u r e s /widener /098 .JPG . . .
(762 / 168065) [1132455680] Proce s s ing f i l e : /mnt/ s t o r e //

p i c t u r e s /widener /IMG_3507 .JPG . . .
(763 / 168065) [1256453888] Proce s s ing f i l e : /mnt/ s t o r e //

p i c t u r e s /widener /IMG_3451 .JPG . . .
(764 / 168065) [1132455680] Proce s s ing f i l e : /mnt/ s t o r e //

p i c t u r e s /widener /FREEDOM 024 .JPG . . .
(765 / 168065) [1256453888] Proce s s ing f i l e : /mnt/ s t o r e //

p i c t u r e s /widener /DogsandFireworks 131 .JPG . . .

. . . output snipped . . .

(168061 / 168065) [1231275776] Proce s s ing f i l e : /mnt/ s t o r e //

48

app_data/mume/mmapper−2.1.0− source / bu i ld / s r c /CMakeFiles/mmapper .
d i r /proxy/moc_connect ion l i s tener . cxx . o . . .

(168062 / 168065) [1256453888] Proce s s ing f i l e : /mnt/ s t o r e //
app_data/mume/mmapper−2.1.0− source / bu i ld / share / i c on s / h i c o l o r /32x32
/apps/mmapper . png . . .

(168063 / 168065) [1256453888] Proce s s ing f i l e : /mnt/ s t o r e //
app_data/mume/mmapper−2.1.0− source / bu i ld / share / i c on s / h i c o l o r /16x16
/apps/mmapper . png . . .

(168064 / 168065) [1231275776] Proce s s ing f i l e : /mnt/ s t o r e //
app_data/mume/mmapper−2.1.0− source / bu i ld / share / i c on s / h i c o l o r /48x48
/apps/mmapper . png . . .

(168065 / 168065) [1256453888] Proce s s ing f i l e : /mnt/ s t o r e //
app_data/mume/mmapper−2.1.0− source / bu i ld / share / i c on s / h i c o l o r /128
x128/apps/mmapper . png . . .

TreeChunk : Complete , took 13306 seconds to proce s s 168065 f i l e s in
4695 f o l d e r s .

Input parameters for chunker here are -i for input or root directory to process
all files beneath (that this user’s account has permission to open and read), -o for
output directory to store intermediate files, and -v for verbose mode (otherwise
much of the output is suppressed). If no input is specified, the current directory
will be used, and if no output is specified, /tmp/ will be used. Chunker begins
by outputting the configuration file’s parameters for user review and immediately
starts up as many worker threads as specified therein. As you can see the worker
threads have IDs that can be matched later on to the IDs in square brackets
indicating which worker is working on which file. The master thread then begins to
walk through the filesystem, adding directories yet to be explored to the directory
queue, and files in need of processing to the file queue. This file tree walk continues
concurrently as processing begins by the workers on the files, until sometime later
(first output snipped statement) the walk is completed and only processing remains.
At that time, time taken to walk the filesystem tree is shown, followed by the
following information for each file processed: (1) Files processed over (2) total
files to process, followed by (3) the thread ID working on that file, and last (4)
the filename itself. Finally, much later when all processing of all files over all
compression and deduplication algorithms has completed, the total time to process
is outputted along with the number of files processed and the number of containing
folders.

49

Intermediate files are outputted to the output directory specified by -i that will
later be read by Stacker. The size of this intermediate data varies directly with the
number and size of the configuration parameters specified in “treechunks.cfg.” For
instance, in this examplary case where a total of six permutations of compressors
(two chunk sizes for ZLIB3, ZLIB9, and LZO1) are used for one medium and
one large chunk size, and four deduplication permutations are used (two segment
sizes for static and Rabin deduplication) for medium and large segment sizes, the
resulting intermediate data occupies 5.3GB.

If one examines much smaller chunk/segment sizes the size of the intermediate
files will be correspondingly much larger since one result of compression (before
and after size) is stored for each chunk and a hash for each segment is stored for
deduplication. Similarly, increasing the number of configuration options to search
over expands the search space dramatically. For a robust, production use case, it
would be advisable to search through two (small and large) or three (small, medium
and large) chunk and segment sizes for multiple compression and deduplication
algorithms. This will provide both insight into which algorithms work well on the
dataset (compression versus deduplication, as well as compressor versus compressor
and static deduplication versus content-based deduplication) as well as what costs
are necessary to achieve real benefits (various sizes of chunks or segments as well as
various levels of compression). Going beyond three sizes of chunks or segments or
two or three compressors or deduplication algorithms will likely lead to diminishing
returns in terms of knowledge gained on the dataset, and will take significantly
longer to complete.

Once Chunker has completed, we move onto use of Stacker, which is written in
Perl to leverage the statistics and visualization packages readily available in the
language and because performance is less critical than with Chunker. Exemplary
execution with resulting output is as follows:
$ p e r l s t a cke r . p l −−inDir=/mnt/ s t o r e / . a_chunk_data/ −−genGraphs −−

genExts
Aggregate S t a t i s t i c s (in Bytes Removed and Percent o f Capacity

Changed) :
Or i g i na l S i z e : 414925739420
Compression S t a t i s t i c s :
For a Chunk S i z e o f : 131072
ZLIB (3) Compression : 316339601065 (−23.76%) (Time :

50

15314.416823)
ZLIB (9) Compression : 312154436694 (−24.77%) (Time :

34696.987718)
LZO (1) Compression : 334471845718 (−19.39%) (Time :

669 .832311)
For a Chunk S i z e o f : 16384
ZLIB (3) Compression : 317351810106 (−23.52%) (Time :

11626.952856)
ZLIB (9) Compression : 313460120319 (−24.45%) (Time :

18766.189788)
LZO (1) Compression : 336420789399 (−18.92%) (Time :

743 .667518)
Dedup S t a t i s t i c s :

S t a t i c (131072) : 90382125434 (−21.78%) (Time :
626 .650498)

S t a t i c (16384) : 90819706742 (−21.89%) (Time :
925 .368151)

Rabin (131072−65536−262144) : 105333055911 (−25.39%) (
Time : 8590 .756560)

Rabin (16384−8192−32768) : 108771261920 (−26.21%) (Time :
9964 .059142)

In this execution of Stacker we opt to have both file extension analyses (–genExts)
and visualization generation (–genGraphs) on the intermediate data generated by
Chunker (–inDir=/mnt/store/.a_chunk_data). Stacker first generates overarching
statistics about the dataset and the impact of each data reduction scheme and
configuration on it. As we can see in these results, the total original size is
expressed first, and then the small chunk size is examined for compressors. Here
the compressor name and compressor level (shown in parentheses) are presented,
followed by absolute bytes occupied after compression, relative percent capacity
change, and finally aggregate time taken to compress. Looking at the larger chunk
sizes and higher compression levels, we see the trend that longer times generate
better savings, although the percent changes are small enough that it becomes
questionable (for this dataset at least) how valuable the much increased time spent
to compress is worth. Note that for datasets comprised entirely of uncompressable
data, it is possible the relative percent capacity change could be positive. Further,
please recognize that the timings shown in these statistics are approximations of
computation cost – since real workloads are not available to TreeChunks in any

51

case, the costs to decompress or later, in deduplications case, the algorithms used
for storing and retrieving data from the look-up table along with all the other
complexities are unclear. Timings shown here are solely for compression time and
hash generation time.

Following both chunk sizes for compression being shown, we see aggregate
deduplication statistics. A similar format follows, the only difference being that
the segment size is shown in parenthesis next to the algorithm name, and for
Rabin the segment parameters read “(average-minimum-maximum)”. Timings for
deduplication are far less useful than for compression since a full deduplicating
filesystem must handle a lot more than the mere hashing function.

If extension analyses are enabled as we did in this example, the following output
will be displayed just following the aggregate statistics:
F i l e Extension S t a t i s t i c s :
Total Space Occupied by F i l e Extension :
JPG: 126653059844
c l ean : 40825940001
csv : 38102289874
CR2: 36870071324
av i : 35500168350
t r a c e : 25059971547
jpg : 23727694292
f l a c : 19519062681
i s o : 18794194944
bz2 : 9572835262

Compressab i l i ty [Bytes Removed / Total Bytes (Percent Change in
Total Bytes Per Extension)] :

For a Chunk S i z e o f : 131072
ZLIB (3) Compression :
c l ean : 30117371144 / 40825940001 (−73.77%)
csv : 28069289250 / 38102289874 (−73.67%)
t r a c e : 21460894295 / 25059971547 (−85.64%)
h5 : 4301070860 / 9402102223 (−45.75%)
NONE: 2721213810 / 4047189814 (−67.24%)
bz2 : 2573559211 / 9572835262 (−26.88%)
av i : 2511793156 / 35500168350 (−7.08%)
CR2: 1959734652 / 36870071324 (−5.32%)
i s o : 1157064868 / 18794194944 (−6.16%)
JPG: 795389501 / 126653059844 (−0.63%)

ZLIB (9) Compression :

52

c l ean : 31529370840 / 40825940001 (−77.23%)
csv : 29417937487 / 38102289874 (−77.21%)
t r a c e : 22207863787 / 25059971547 (−88.62%)
h5 : 4610919416 / 9402102223 (−49.04%)
NONE: 2852742061 / 4047189814 (−70.49%)
bz2 : 2664998885 / 9572835262 (−27.84%)
av i : 2658372262 / 35500168350 (−7.49%)
CR2: 1909668453 / 36870071324 (−5.18%)
i s o : 1198061991 / 18794194944 (−6.37%)
JPG: 752202001 / 126653059844 (−0.59%)

LZO (1) Compression :
c l ean : 25279530027 / 40825940001 (−61.92%)
csv : 23539497469 / 38102289874 (−61.78%)
t r a c e : 19575807968 / 25059971547 (−78.12%)
h5 : 3184950747 / 9402102223 (−33.87%)
NONE: 2249197267 / 4047189814 (−55.57%)
bz2 : 2109755610 / 9572835262 (−22.04%)
av i : 1050948796 / 35500168350 (−2.96%)
CR2: 826377510 / 36870071324 (−2.24%)
i s o : 785521465 / 18794194944 (−4.18%)
outv : 260413188 / 339442242 (−76.72%)

For a Chunk S i z e o f : 16384
ZLIB (3) Compression :
c l ean : 30153981097 / 40825940001 (−73.86%)
csv : 28030115014 / 38102289874 (−73.57%)
t r a c e : 21211982473 / 25059971547 (−84.64%)
h5 : 4278152472 / 9402102223 (−45.50%)
NONE: 2704961218 / 4047189814 (−66.84%)
bz2 : 2459338594 / 9572835262 (−25.69%)
av i : 2369892031 / 35500168350 (−6.68%)
CR2: 1833004004 / 36870071324 (−4.97%)
i s o : 1089627053 / 18794194944 (−5.80%)
JPG: 674969218 / 126653059844 (−0.53%)

ZLIB (9) Compression :
c l ean : 31410802007 / 40825940001 (−76.94%)
csv : 29227014589 / 38102289874 (−76.71%)
t r a c e : 21872200544 / 25059971547 (−87.28%)
h5 : 4574507316 / 9402102223 (−48.65%)
NONE: 2839598055 / 4047189814 (−70.16%)
bz2 : 2533513838 / 9572835262 (−26.47%)
av i : 2518221904 / 35500168350 (−7.09%)

53

CR2: 1851515225 / 36870071324 (−5.02%)
i s o : 1118642010 / 18794194944 (−5.95%)
JPG: 685825141 / 126653059844 (−0.54%)

LZO (1) Compression :
c l ean : 24691313862 / 40825940001 (−60.48%)
csv : 22967067736 / 38102289874 (−60.28%)
t r a c e : 19254303960 / 25059971547 (−76.83%)
h5 : 3121966982 / 9402102223 (−33.20%)
NONE: 2213507845 / 4047189814 (−54.69%)
bz2 : 2032968901 / 9572835262 (−21.24%)
av i : 938347249 / 35500168350 (−2.64%)
CR2: 787755841 / 36870071324 (−2.14%)
i s o : 738968365 / 18794194944 (−3.93%)
outv : 257528572 / 339442242 (−75.87%)

Dedupabi l i ty [Bytes Removed / Total Bytes (Percent Change in Total
Bytes Per Extension)] :

S t a t i c Algorithm (131072) :
JPG: 61113438097 / 126653059844 (−48.25%)
jpg : 12284551570 / 23727694292 (−51.77%)
c l ean : 7928368537 / 40825940001 (−19.42%)
csv : 5106964730 / 38102289874 (−13.40%)
bz2 : 2401158565 / 9572835262 (−25.08%)
av i : 505937920 / 35500168350 (−1.43%)
out : 419430400 / 632512191 (−66.31%)
AVI : 158119972 / 5092443734 (−3.10%)
mp3 : 151507650 / 2925132418 (−5.18%)
pdf : 148408669 / 2627155324 (−5.65%)

S t a t i c Algorithm (16384) :
JPG: 61137391509 / 126653059844 (−48.27%)
jpg : 12286943636 / 23727694292 (−51.78%)
c l ean : 7948881305 / 40825940001 (−19.47%)
csv : 5116762362 / 38102289874 (−13.43%)
bz2 : 2401158565 / 9572835262 (−25.08%)
av i : 512765952 / 35500168350 (−1.44%)
out : 419430400 / 632512191 (−66.31%)
pdf : 176818525 / 2627155324 (−6.73%)
mp3 : 164549314 / 2925132418 (−5.63%)
AVI : 158119972 / 5092443734 (−3.10%)

Rabin Algorithm (131072−65536−262144) :
JPG: 64579401173 / 126653059844 (−50.99%)
jpg : 12368723861 / 23727694292 (−52.13%)

54

c l ean : 11863904606 / 40825940001 (−29.06%)
csv : 5930557821 / 38102289874 (−15.56%)
av i : 4338238013 / 35500168350 (−12.22%)
i s o : 2619268144 / 18794194944 (−13.94%)
bz2 : 2401158565 / 9572835262 (−25.08%)
out : 419430400 / 632512191 (−66.31%)
mp3 : 283609465 / 2925132418 (−9.70%)
pdf : 198932206 / 2627155324 (−7.57%)

Rabin Algorithm (16384−8192−32768) :
JPG: 64856115993 / 126653059844 (−51.21%)
c l ean : 12978095778 / 40825940001 (−31.79%)
jpg : 12388994869 / 23727694292 (−52.21%)
csv : 6436248574 / 38102289874 (−16.89%)
av i : 4350427360 / 35500168350 (−12.25%)
i s o : 3182163618 / 18794194944 (−16.93%)
bz2 : 2401158565 / 9572835262 (−25.08%)
pdf : 712011889 / 2627155324 (−27.10%)
out : 419430400 / 632512191 (−66.31%)
mp3 : 326729389 / 2925132418 (−11.17%)

In the case of a full execution, all file extensions will be shown for completeness,
not just the top ten. These results indicate that the dominating three file types
in this dataset are JPG, clean, and csv (the latter two are ASCII data files), but
although these take up the most space they are not necessarily the ones which
benefit most from compression and deduplication. For instance, while clean and
csv benefit massively from compression (varying from 60% to 77% smaller) JPG,
an already pre-compressed format, saves less than 1% of its total capacity. These
file extension results expand on the knowledge gained at a general level from the
aggregate statistics by informing the administrator or researcher as to the specific
use and nature of the dataset, and what types of its use will be impacted and
improved by compression and deduplication.

Last, if visualization is enabled a geography of the impact of compression and
deduplication is made available to the user. These graphs are generated in JPEG
format and are saved into the intermediate data folder. One graph from each
algorithm, LZO, ZLIB, static deduplication and content-based deduplication, are
shown in Figures 3.2a, 3.2b, 3.3a, and 3.3b, respectively. As we can see, while
compression impacts a much broader number of folders, it still benefits more in
certain directories (e.g., the ASCII data file directories, compared to the JPEG

55

(a) LZO (1)

(b) ZLIB (9)

Figure 3.2: Compression efficacy filesystem map

56

(a) Static

(b) Rabin

Figure 3.3: Deduplication efficacy filesystem map

57

pictures directories) than others. Deduplication, on the other hand, is very polarized,
often completely or close to completely eliminating the data in a given directory or
not reducing it at all (i.e., large clusters of all red or all white). This is expected
given the nature of deduplication, particularly for the dataset at hand from a
single (organized and storage-space sensitive) user. Were multiple user’s data
examined who all worked at the same company, copied files or copied and very
slightly changed files would be much more common. Nevertheless, this provides the
user insight into which techniques work better, compression in this case, and which
directories to enable it on if the filesystem allows directory-specific compression
enabling/disabling (i.e., as available in BTRFS). By picking and choosing which
directories to enable compression, the directories, such as pictures and music, which
do not benefit whatsoever from compression, won’t suffer unnecessary and costly
compression attempts in the process.

3.7 Conclusion
In this work we have erected design desirata for and implemented TreeChunks, a
data reduction evaluation toolkit. As our evaluation demonstrates, TreeChunks
makes a new tool available for researchers, engineers, and administrators alike
to examine their data stores in more detail than they were ever able to short of
entirely migrating to a new storage solution. TreeChunks provides full control
to examine the impact of various compression and deduplication schemes and to
test different tunables within each scheme in an automated fashion. It provides
aggregate statistics demonstrating which scheme provides the most data reduction
over the entire dataset, and allows the user to drill-down further with detailed
information such as capacity consumed by file type, data reduced by file type,
and visual topologies of the directory tree. These topologies give a quick but rich
reference for where most of the capacity is located in on’es filesystem as well as
how such capacity is impacted by various schemes. Ultimately, we believe this tool
will enable storage experts of all types to explore avenues for data reduction that
were previously intractably difficult, which should help alleviate the bandwidth
limitation we are concentrating on in this thesis.

58

Chapter 4 |
Data Storage Improvement: Ex-
tending SSD Longevity

4.1 Introduction
Today, NAND-flash-based Solid State Drives (SSDs) are well-known and well-used
in both commodity and commercial spaces. They bring to bear latencies and band-
widths far superior to traditional Hard-Disk Drives (HDDs), which helps to lessen
the otherwise vast gap between main memory latencies and HDDs. Unfortunately,
while SSDs have made great strides in the recent past, they still suffer from wear-out
characteristics of the underlying NAND flash material.

Specifically, NAND flash is only able to handle a certain number of Program
and Erase (P/E) cycles before a signal can no longer be stored stably. This issue is
exacerbated by the reality that, to enable increased data density at a given feature
size, techniques have been developed to store two, three, and even more bits into a
single NAND flash cell, leading to major reductions in the threshold at which that
cell must be declared “dead.” [64, 65] Furthermore, new material science has led to
reductions in the very size of such cells, which also impacts their ability to reliably
retain data. [65] Because of these issues, as NAND-flash-based SSDs are used and
age, their performance degrades as cells become harder to program reliably, and
some cells die altogether and must be worked around. There are a number of works
that have attempted to cope with these wear-out problems via techniques such as
improved garabage collection to reduce write-amplification (the increased impact
of a single write due to garbage collection), which we elaborate on in Section 4.5.

59

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

400
600
800
1000
1200
1400
1600
1800
2000
2200
2400

La
te

nc
y

(u
s)

P/E cycle

 LSB
 MSB
 Typical

Transition Occurrence

(a) MLC NAND Flash Drive A

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200

La
te

nc
y

(u
s)

P/E cycle

 LSB
 MSB
 TypicalTransition Occurrence

(b) MLC NAND Flash Drive B

Figure 4.1: Proof-of-concept: Zombification process of NAND flash in two manu-
facturer’s raw flash chips, demonstrating longer life and improved latency. Latency
is shown to write all LSBs or MSBs in a page, and this process of writing all LSBs
and then all MSBs in each page, for all pages in a block, and then erasing the block,
are shown up until the block is declared dead. Typical latency is the average of the
two.

However, in this work, rather than proposing yet another technique to reduce
write-amplification or avoid temporary writes ever making it to the flash, we seek
an entirely “unnatural” solution to the problem: we allow the cells to die a normal
death, and subsequently bring them back from the dead, which we call zombified
NAND-flash-cells. More specifically, upon the death of a cell, the point at which
it can no longer reliably store two or three bits, we propose an algorithm that
reduces the bit-capacity of a given cell by one. This has the curious side-effect of
increasing the read, write, and erase speeds of a zombified flash-cell, and, on the
whole, in many cases gradually improves the performance of the drive as it ages. To
fully leverage these effects, we propose a novel adaptation to existing wear-leveling
and garbage collection that greatly increases the potency of the ZombieNAND
technique.

Nevertheless, there seems to be one major drawback to zombifying your NAND-
flash cells: one bit of capacity is lost upon every transition to a lower bit-state.
However, we argue that, since we are waiting until the cell dies to transition, the
only alternative is to let the cell die and sit dormant, as it does now, which would
lose you two or three bits for MLC or TLC cells, respectively. So, we prefer to
think of it as one or two bits are gained relative to complete death – our results

60

demonstrate this to be the case with vastly increased drive lifetimes compared to
traditional SSDs.

It is critical to note and understand why we, in absolutely no case, convert some
of the flash to a lower state prior to their natural death. Manufacturers aggressively
compete regarding how many P/E cycles their flash promises prior to death, and
therefore, are extremely unlikely to implement any strategy that jeopardizes those
guarantees. Therefore, towards the goal of developing a novel lifetime-extending
scheme that can be implemented in the real-world, we make sure never to convert a
cell until it has fully worn-out at that bit-level.

Before we begin, we need to motivate that this “zombification” is indeed
achievable in real NAND-flash. Therefore, we performed and present results from
an initial evaluation on two raw MLC NAND devices from distinct manufacturers
in Figure 4.1. Therein we plot latency to write the least-significant bit (LSB) and
the most-significant bit (MSB), the two bits in an MLC cell, over their lifetime.
Latency shown is to write all LSBs or MSBs in a page, the lowest granularity of
writes that can be performed. We continue the process by writing LSB and then
MSB for all pages in a block, and then perform an erase on that block. This process
is repeated until the block throws errors as demarcated with the vertical dotted line,
at which point we transition from MLC to SLC and solely write to the LSB going
forward. As can be seen, the cells continue to function in SLC-mode post-transition
from approximately 3,000 Program/Erase (P/E) cycles all the way to in excess of
100,000 P/E cycles, and further, post-transition average latencies inherit the lower
latencies of SLC NAND-flash.

However, manual transition of cells in this way is only a proof-of-concept – not
a production-ready contribution. Therefore, to master the art of auto-zombification
and management of zombie versus living NAND cells, we present the major contri-
butions of this paper:

• Physics-Accurate SSD Simulator: We need to simulate much of the
functionality of a flash-based SSD’s flash translation layer (FTL), but, with
the fidelity of a physics-based flash cell simulator because block-erase counters
simply do not suffice (we do not know how much is really left post-transition).
Therefore, we made extensive changes to a popularly used SSD simulator to
enable it to perform physics-accurate transitions between bit-states. This is,
to the best of our knowledge, the first work to enable accurate simulation

61

of the entire lifetime of an SSD from prestine state to its death, which we
leverage extensively in our exploration of the ZombieNAND technique.

• Controlled Wear-Unleveling: We find that traditional wear-leveling re-
sults in too great a number of the cells dying at around the same time, limiting
the impact of zombification. Therefore, we develop a novel wear-leveling
mechanism that is both simple and effective at achieving a controlled degree
of wear-unleveling such that a configurable number of cells transition (die
and become zombies) earlier than the rest, which often improves the lifetime
and the performance of the drive on the whole in advanced ages.

• Industry-Relevant Results: Changing the bit state sacrifices capacity and
therefore has potential to cause the drive to use all reserved space and die
earlier than as promised by the manufacturer. To avoid this and assure our
results are industry-relevant, we set an invariant that we never may transition
a cell to a lower bit-state unless it has reached the promised number of erases
by the manufacturer. Further, by prioritizing simple but effective adaptations
to existing garbage-collection and wear-leveling techniques over complex and
fragile algorithms, we argue ZombieNAND can be implemented with only a
modicum of difficulty across a wide variety of existing FTLs.

• Expansive Environment Evaluation: We witness a broad spectrum of
performance and lifetime impacts based on varying environment conditions
such as: proportion of reserved space, workload read to write ratios, working
set size relative to reserved space size, and starting at MLC versus TLC.
Therefore, in our evaluation, we use our simulator to perform an expansive
search over all such environment conditions from prestine state to death of
the SSD to provide conclusive evidence to when zombification can bring large
benefits and when it cannot.

In this work we explore our ZombieNAND technique using both synthetic
workloads and real traces. We demonstrate that ZombieNAND never hurts the
lifetime of the SSD when compared against an SSD without it for over five-hundred
different synthetic experiments and over sixty trace-driven runs. For workloads and
configurations where it does help, which are the majority of the results presented,
for TLC drives it can extend the lifetime from 20% to over 11 times for traces,

62

M
ic

ro
p

ro
ce

ss
o

r

CH A

Flash Chip Flash Chip

CH B

Flash Chip Flash Chip

CH C

Flash Chip Flash Chip

CH D

Flash Chip Flash Chip

Channel

H
o

st
 I

n
te

fa
c
e

Way

NAND Flash

Memory Array

DATA REGISTER

CACHE REGISTER

1 Block

NAND Flash

Memory Array

DATA REGISTER

CACHE REGISTER

N
A

N
D

 F
la

sh
 I

n
te

rf
a

c
e DIE 0

DIE 1

DIE 2

DIE 3

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

(Plane)

1 Block

wordline

SSD Internals NAND Flash Package Internals

Figure 4.2: Typical SSD Architecture

and as high as 16 times for fully random synthetic I/O. For MLC drives this
lifetime extension ranges from 73% to 375%, and reaches 325% in synthetic tests.
Additionally, we provide time-series analysis demonstrating that ZombieNAND
never degrades average latency compared to a vanilla drive during the lifetime
of the vanilla drive. While average latency does, under some workloads, degrade
somewhat after the death of the vanilla drive, a bit slower is much preferable to
dead, and for around half of the traces latency is instead reduced by typically
around 20% to 25%, and can reduce as much as 50% (even post-death) for TLC.
MLC results demonstrate typical latency improvements from about 10% to 25%
for half of the workloads, and can be as low as 40% reduced.

4.2 Background
To facilitate an informed vantage point for our work, we provide background
starting at a high level for flash-based SSDs and drilling down. We first describe
SSD architecture and some of the key parameters and mechanisms we explore in
this work, and then move into the actual NAND flash itself. Having given a basic
overview of the mechanisms in NAND flash, we last highlight some of the physics of
NAND wear-out characteristics, which we leverage towards high-fidelity simulation
of bit-switching for “undead” flash.

63

4.2.1 SSD Architecture

NAND-flash-based SSDs are highly parallel in nature, as shown in Figure 4.2.
Each SSD is connected to the host typically by SATA, SAS, or PCIe interfaces,
and multiple channels within connect the interface to groups of NAND packages.
Within each package there exist one or more dies, and within each die there are
often one or more planes, which require specialized data access modes to fully
leverage. In total, this makes for an architecture where hundreds of individually
small, low-bandwidth, flash storage areas all work in tandem to provide larger
capacities, low latencies, and high bandwidth.

Managing that architecture towards optimal performance and importantly,
effective wear-leveling, is a complex task that is the duty of the flash translation
layer (FTL). This FTL performs duties including, but by no means limited to,
address translation (between the host and the physical addresses), bad block
management, wear-leveling, a variety of performance optimizations, and garbage
collection. In this work the FTL plays a crucial role in allowing “undead” flash
to not only clamber along after death, but also to acknowledge that these cells
store a smaller capacity, and to utilize their special properties of being faster and
longer-lived to extend the life and improve performance of the drive on the whole.

4.2.2 NAND Flash Overview

Moving down to analysis of the NAND flash material itself, at the level of an
individual cell NAND is made up of floating-gate transistors. These transistors are
capable of storing data for extended periods of time relative to DRAM and other
temporary memory solutions, but have the side-effect that, in order to write over
a previously written section, they must first be discharged (hereafter referred to
as “erased”). For the most basic NAND flash cells, single-level cells (SLC), the
floating-gate either has a high threshold voltage (Vt), which demarcates that the
cell is erased and is a “1,” or it has a low Vt, indicating it has been written and is
“0.” For increased bit counts, more voltage levels are added to indicate the increased
number of bits, which divides the entire voltage range into 2n distinct voltage levels
for an n-bit flash cell.

64

4.2.3 The Physics of Cell Wear-Out

There are countless interesting and nuanced properties of NAND flash cells, but
the critical ones for this work revolve around their physical properties relating to
wearing-out. As mentioned, NAND flash suffers from wear-out due to the impact of
the P/E cycle. This is specifically due to the charging process resulting in electrons
getting “stuck” in the interface and oxide layers of the floating-gate transistor. As
more and more electrons accumulate there, at some point Vt exceeds the margin
between distinct voltage levels and therefore discerning between one level or the
other becomes impossible. However, as is to be expected, this collection is not
purely monotonic – after some time charge can “leak” out from the oxide, returning
a cell from a dead state to a usable state again.

This process of electron trapping and leakage has been extensively studied
and modelled in [66], [67], and [68], which we incorporate into this work. This
level of high-fidelity wear-out simulation is required in this work because we need
to know, if we switch from some higher bit-mode to a lower one, what “life” yet
remains in the cells. Since switching is merely a logical interpretation, we retain
the trapped voltage at a per-block granularity, which will not change on bit-switch,
and reference a higher threshold relative to the current bit-mode.

Algorithm 4 Oxide Stress Model Psuedocode
1: procedure calc_stress(cycle)
2: A← 0.08
3: B ← 5.0
4: Cox← 2.15e−17

5: q ← 1.6e−19

6: δNit ← A ∗ cycle0.62

7: δNot ← B ∗ cycle0.30

8: δVit ← (δNit ∗ q)/Cox
9: δVot ← (δNot ∗ q)/Cox
10: return (δVit + δVot)
11: end procedure

Pseudocode for our oxide stress model, most closely tracking the model as
presented in [66], is shown in Figure 4. A and B in the model are constants derived
in that work, and q is electron charge in Coulombs. As [66] failed to specify the
value for Cox, which is the capacitance of the oxide, we were forced to re-calculate
it by fitting to their graphs and validating against our evaluation on actual flash

65

as shown in Figure 4.1. δNit and δNot represent densities of traps forming in the
oxide, respectively, interface traps and bulk traps. Correspondingly, δVit and δVot

are the interface and bulk trap voltage shifts, which add together towards the total
shift of δVt.1

4.3 Wear-Unleveling for Lifetime

4.3.1 The Basics of Wear-Leveling

Modern SSDs tout all forms of complex garbage-collection and wear-leveling algo-
rithms to assure the cells within wear-down at roughly the same rate throughout
the many planes, dies, packages, and channels within. In doing this traditional
SSDs, which simply mark cells as dead when they are no longer reliable in storing
the bit-count they were designed for, do an excellent job at reaching near-optimal
life. Optimal lifespan for a traditional SSD can be defined as “using all of the flash
medium in such a uniform manner that when a cell finally is erased and declared
dead, all of the remaining cells are also one erase from death themselves.” In short,
if all the flash dies at nearly the same time, the most use was gotten out of the pool
of flash as is possible. To fully appreciate this consider a sub-optimal alternative,
where half of the flash in the SSD is on the verge of death and the half has been
completely unused thus far. If that near-dead half continues to be used and dies off,
the drive will report itself as wholly dead when the amount of dead flash exceeds
the reserved amount (often in the range of 5% to 30% extra flash). So, in this
simplified case, only half of the drive’s life has been expended even though it has
reported itself as entirely dead to the operating system.

Wear-leveling functionality tends to be concentrated around the garbage-
collection process as that is where erases largely occur, and erases have the most
negative impact on cell lifetime. In a simple garbage collection process, once it
begins on a given package it does not stop cleaning until a high-watermark is
reached. At a high-level, first a usage table is retrieved, which organizes all the

1In private discussions with industry professionals we ascertained that, while this stress model
roughly captures the effects of P/E cycles in modern NAND flash, recovery characteristics due to
charge leakage from the oxide layers are far less consistent between manufacturers and feature
sizes, and therefore difficult to predict. Therefore, to present the most conservative estimates of
lifetime-enhancement, we assume zero recovery is possible.

66

blocks in the package into buckets based on the number of valid pages within.
A page is considered valid if a logical address still points to it – upon an erase
and/or rewrite of that logical address, the block is simply marked as “invalid,” it is
not necessarily immediately erased in physical terms. The highest priority bucket
contains blocks whom have no valid pages within (and therefore no data will need to
be read and written out somewhere else), and the lowest priority bucket has blocks
with only one invalid page. Blocks without any invalid pages are not considered,
as erasing and moving these does nothing but damage and slow the drive. By
prioritizing erasure of blocks with large numbers of invalid pages, a smaller amount
of data needs to be read out of these blocks, coalesced, and written back into other
blocks (also known as write amplification).

This results in higher-performance garbage collection and lower write amplifi-
cation, but without other protections does nothing to assure real wear-leveling is
being achieved. Therefore, as the garbage collector works through the high-priority
buckets, it also considers the number of times a given block has been erased in
comparison to the average erase count of the entire package. If that block exceeds
the average by a predefined threshold, we consider it to be overused and skip past
it to another block with less erases. Again, this is a simplified garbage-collection
and wear-leveling strategy – deciding which blocks to erase, which to skip past,
how write-amplification should be balanced against over-worn blocks, and the like
have all been studied at length in numerous other works. Moreover, with few
exceptions, our proposed changes to this simplified wear-leveling mechanism as
follows is sufficiently simple such that it should be orthogonally applicable to a
broad base of the many garbage collectors and wear-leveling algorithms currently
in the wild.

4.3.2 The Early Switching Pool

In this work a simplified wear-leveling strategy not only suffices to explore our
methodology, but was found in early experiments to be overly effective. Put
succinctly, when you give up the requirement that “a cell dies when it is no longer
able to reliably store a predefined set of bits,” and instead allow that cell to
repurpose itself to a lower bit-count as we do, you no longer want your entire drive
to reach a near-dead state at the same time. If such occurs, transitioning down to

67

a lower-bit count results in only a dead drive. If an MLC drive wholly transitions
to SLC, unless the reserved area is greater than 50% of the drive (unlikely for cost
reasons), the drive will be forced to report itself as dead. The same property applies
to TLC, although the subsequent transition to SLC means an even greater reserved
area would be needed to protect against whole drive transition without the drive
announcing its death.

Therefore, we propose a simple but, as we will later demonstrate, highly effective
adaptation to the above wear-leveling strategy that “wear-unlevels” a predefined
fraction of the drive in a controlled manner without sacrificing any of the manufac-
turer’s guarantees about drive lifetime as shown in Algorithms 5 and 6. Further, we
define a pool of “early switch” blocks in each and every flash die as the following:

Early Blocks ≤ (R−W)×B
2S−2 (4.1)

Here R is the reserved percentage, W is the high-watermark percentage (when
GC stops), B is the number of blocks per element, and last S is the starting bit-level
of the blocks (we do make the assumption that all blocks in the SSD start at the
same bit-level). The high-water free blocks percentage is first removed from the
pool of reserved blocks as we consider a drive dead if it exceeds this amount of
dead blocks. The remaining percentage is then multiplied by the blocks per element
to get our pool of blocks which can die without the element dying entirely, which
we last divide by a power of two dependent upon the number of bits started with.
This final term, which boils down to simply dividing by two if started as TLC,
was decided upon after testing turning the entirety of that extra space into “early
switch” cells. Because TLC (when compared against MLC) has a very low erase
count prior to death, but a higher capacity after death and transition, getting a
the early switch blocks to transition sooner is critical, and therefore concentrating
accesses on a smaller early switch pool is the easiest way to achieve this.

Our wear-unleveling methodology as described in Algorithms 5 and 6 follow
much of the same paths as the standard wear-leveling algorithm, with a two notable
points to make: First, although unshown, whenever an erase is performed, if the
block is discovered to be dead (in our simulator, indicated by having trapped charges
exceeding specified thresholds), it is always transitioned down one bit (dead SLC
can go no further and therefore is simply marked dead). Thresholds correspondingly
raise on this action, and, provided the reserved capacity of the drive has not fallen

68

Algorithm 5 Usage Table Construction
1: procedure build_usage_table(element)
2: table← malloc_table
3: for i← 0, params.blocks_per_element do
4: usage← metadata.block_usage[i].num_valid
5: table[usage].len++
6: end for
7: buckets← malloc_buckets(table)
8: for i← 0, params.blocks_per_element do
9: usage← metadata.block_usage[i].num_valid

10: buckets[usage][table[usage].tmp].num← i
11: buckets[usage][table[usage].tmp++].rem_life ←

calc_life_remaining(element, i)
12: end for
13: for i← 0, params.pages_per_block − 1 do
14: qsort(buckets[i], table[i].len, comp_life_earlyswitch)
15: for j ← 0, table[i].len do
16: table[i].block[j]← buckets[i][j].num
17: end for
18: end for
19: end procedure

below the high-watermark percentage, the block can live on to die another day.
Second, in creating our usage table buckets, number of valid pages is still the
most important property considered in sorting. Simply being an early-switcher
does not allow a block to get into a higher priority bucket – write amplification
due to increased valid pages would over-ride potential benefits. However, if an
early-switch block and a normal block are both in the same valid-pages bucket, the
early-switch block will always be chosen, and thus the early-switch property is the
second most important propery to sort upon. So, although early-switch blocks are
not wear-leveled against normal blocks (and importantly, vice-versa), early-switch
blocks are wear-leveled amongst themselves.

4.4 Evaluation

4.4.1 Simulation Framework

In order to evaluate the ZombieNAND algorithm as just described, we needed to first
build a simulator capable of returning physically-accurate results for long-running

69

Algorithm 6 GC with Controlled Wear-Unleveling
1: procedure clean_blocks(element)
2: avg_life← compute_avg_life(element)
3: usage_table← build_usage_table(element)
4: for i← 0, params.pages_per_block − 1 do
5: current_table← usage_table[i]
6: for j ← 0, current_table.length do
7: blk ← current_table.block[j]
8: rem_life← calc_life_remaining(element, blk)
9: if rem_life < (LIFE_THRESHOLD ∗ avg_life) then

10: if not_early_switch(blk) then
11: continue
12: end if
13: end if
14: clean_block(blk, element)
15: if done_cleaning(element) then
16: break
17: end if
18: end for
19: if done_cleaning(element) then
20: break
21: end if
22: end for
23: end procedure

simulations. DiskSim [69], a widely known and used magnetic disk simulator, has
been extended for simulation of idealized SSDs by Microsoft Research [70]. As
ZombieNAND concentrates on extending the overall lifetime of the SSD, we deemed
it reasonably acceptable to use an idealized SSD simulation framework rather
than something higher fidelity on the short-term but much more computationally
expensive. However, this extension fell quite short of our needs as it only used
block-counter style of lifetime estimation. Because we are switching the logical
interpretation of a cell when it reaches death in its current state, it is not, for
example, acceptable to simply deduct 3,000 P/E cycles that were used when in
TLC state from the subsequent MLC state. This would result in 27,000 cycles
remaining in MLC, and would significantly overestimate the remaining lifetime for
the drives.

Therefore, after carefully reviewing works as discussed in Section 4.2, [66], [67],
and [68], we incorporated their findings into a new, physically-aware lifetime

70

calculation sub-system within the DiskSim SSD Extension. This was the first and
major hurdle in the road towards a simulator that would provide physically-accurate
results for ZombieNAND. Second, we had to incorporate the notion of different
page sizes in the simulator. Because DiskSim (and the extension) were built on the
premise of single size sectors and pages, we had to carefully add features to the
existing functionalities to enable them to cope with potentially two or three different
page sizes (in the case of MLC or TLC, respectively). Last, although DiskSim is
well known and used, it is also somewhat dated for modern 64-bit machines and to
our knowledge has never been used for very long-running experiments. Specifically,
to properly evaluate ZombieNAND, we needed to start with a fully pristine SSD,
and continue issuing operations to it until it declared itself completely dead. This
process would often take as long as a week on a single machine and would ultimately
have issued dozens of billions of operations at the SSD over its lifetime. However,
we found many of the variables and data structures in place failed to scale to
handle these durations and raw volumes of commands. This resulted in a number
of segmentation faults and less obvious bugs until we finally adapted all of the
underlying code to handle long-running simulations like ours.

4.4.2 Experimental Setup

In evaluating ZombieNAND, we note the following configuration choices as shown in
Tables 4.1 and 4.2. Five additional points are worth noting to fully understand the
following experimental results: First, for the synthetic experiments we simulate an
SSD with a single, reasonably small NAND flash element inside because we sought
to explore a large search-space of parameters (which would be intractable at larger
sizes and counts of elements). Second, in the case of the trace-driven experiments,
we move to a larger, multi-element SSD sized at 1 Gigabyte, but cannot scale to
modern sizes (128GB-1TB) because again, we are simulating the entire lifetime of
the SSD. Even at 1GB, simulations take multiple days on modern machines, and
DiskSim was not designed to scale up for HPC-style simulation (because of the large
code-base, adapting it for such would be a massive undertaking). Nevertheless,
we argue that our results should scale to larger sized SSDs for synthetic and
trace-driven experiments so long as reserve area percentages, which we find to
be the most dominant parameter, stay the same. Third, all of these experiments

71

Access Type (unit) SLC (2KB) MLC (4KB) TLC (8KB)
Read (page) 0.025 ms 0.05 ms 0.15 ms
Write (page) 0.2 ms 0.5 ms 1.0 ms
Erase (block) 1.5 ms 1.5 ms 3.0 ms

Table 4.1: Access latencies based on operation type (unit operation works on is
shown in parentheses) and NAND bit-level. NAND bit-level headers are shown
with size of a page in parentheses.

Synthetic Trace-Driven
Flash Chips 1 4

Blocks per Element 128 512
Planes per Element 8 8
Blocks per Plane 16 64
Pages per Block 128 128

Table 4.2: Key experimental configurations of the simulated SSD for synthetic and
trace-driven tests.

assume a SATA 300 interface (and corresponding block transfer times are used).
Fourth, garbage collection, which has been explained to be a critical component of
ZombieNAND, kicks in at a predefined minimum percentage of blocks free and runs
in the background until a high-watermark percentage of blocks are available again.
In all of our experiments, we use 2% and 5% for these values, respectively. Last,
while we use a physics-based engine we developed based on models in prior works
to determine lifetime remaining for a given flash cell, the parameters within have
been tuned to correspond to state-of-the-art manufacturer guarantees. Specifically,
we have tuned the physics engine to declare an unswitching SLC-, MLC-, and
TLC-based SSD dead at roughly 75,000, 6,000, and 1,000 P/E cycles, respectively.
These values were gathered from a broad survey we performed of recently-released
SSDs in the various categories and manufacturer specifications associated with them,
and the timings shown in Table 4.1 were drawn from specification sheets [71], [72],
and [73].

4.4.3 Synthetic Results

In this set of experiments we use a synthetic access generator we built that takes two
parameters, read-to-write ratio and working-set size, and test it across a number of
different reserved area configurations of the SSD. This synthetic access generator

72

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(a) Synthetic Lifetime (TLC 20% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

R
e

la
ti
v
e

 C
h

a
n

g
e

 f
ro

m
 B

a
s
e

lin
e

(b) Synthetic Latency (TLC 20% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(c) Synthetic Lifetime (TLC 50% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

R
e

la
ti
v
e

 C
h

a
n

g
e

 f
ro

m
 B

a
s
e

lin
e

(d) Synthetic Latency (TLC 50% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(e) Synthetic Lifetime (TLC 80% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

R
e

la
ti
v
e

 C
h

a
n

g
e

 f
ro

m
 B

a
s
e

lin
e

(f) Synthetic Latency (TLC 80% Writes)

Figure 4.3: Lifetime and latency results for TLC-NAND-based SSDs under
synthetically-generated random-I/O workloads. Varying amounts of reserved area,
and working set size of the workload are shown within each graph, and varying
amounts of writes are shown across graphs. Lighter colors indicate better lifetime
or latency.

73

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1

 1.5

 2

 2.5

 3

 3.5

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(a) Synthetic Lifetime (MLC 20% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1

 1.5

 2

 2.5

 3

 3.5

R
e

la
ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(b) Synthetic Lifetime (MLC 50% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 1

 1.5

 2

 2.5

 3

 3.5
R

e
la

ti
v
e

 I
m

p
ro

v
e

m
e

n
t

O
v
e

r
B

a
s
e

lin
e

(c) Synthetic Lifetime (MLC 80% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

L
a

te
n

c
y
 N

o
rm

a
liz

e
d

 R
e

la
ti
v
e

 t
o

 B
a

s
e

lin
e

(d) Synthetic Latency (MLC 20% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
a

te
n

c
y
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

(e) Synthetic Latency (MLC 50% Writes)

 10 20 30 40 50 60 70 80 90

Working Set Size (% of SSD)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

R
e

s
e

rv
e

d
 A

re
a

 (
%

 o
f

S
S

D
)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

L
a

te
n

c
y
 R

e
la

ti
v
e

 t
o

 B
a

s
e

lin
e

(f) Synthetic Latency (MLC 80% Writes)

Figure 4.4: Lifetime and latency results for MLC-NAND-based SSDs under
synthetically-generated random-I/O workloads. Varying amounts of reserved area,
and working set size of the workload are shown within each graph, and varying
amounts of writes are shown across graphs. Lighter colors indicate better lifetime
or latency.

74

simply generates a random workload across the specified working-set size, and
continues issuing random accesses as fast as the SSD can handle until the drive
dies. Read-to-write ratio simply defines the probability the randomly generated
access will be a read or a write. Working-set size defines how large of an address
space the synthetic generator can randomly choose an access to occur on. For
example, since we are using a single element in these experiments, 64MB in size,
in the cases of 50% working set size, addresses starting at zero and going up to
32MB of the drive can all be issued to. Last, it is perhaps most important to
understand specifically what we mean by reserved area. In all of our synthetic
and trace-driven results, reserve area denotes the percentage of the total state size
deducted from the user-visible SSD space. So, unlike its common use, in our 1GB
SSD evaluation, whether we are using a reserved area of 10% or 30%, the total
flash in the SSD is still 1GB – the only thing changing is the accessible logical
address space to the application. This is a critical point because we did not want
to confound our results by having added more reserved area to a base amount of
flash; fixing the total raw flash available keeps all of the configurations on an even
playing field.

Results from over five-hundred distinct experiments we performed to cover
variations on these three key dimensions for both TLC and MLC are shown in
Figures 4.3 and 4.4, respectively. These heat-maps depict life and latency changes
relative to an unswitching execution with the exact same parameters, which we
hereafter refer to as the baseline. The baseline is normalized to 1.0 for both latency
and lifetime plots, and in the lifetime cases, all experiments do as least as well as
the baseline (a design goal). The latency results depict latency average over the
entire lifetime of the SSD, so it is important to remember in the ZombieNAND case
the lifetime is always greater than or equal to the baseline. Therefore, even though
sometimes the latencies are worse than the baseline average, these degradations
only occur after the life of the baseline SSD has expired. We lack space to show
detailed, time-series latency results for these synthetic runs, but for an example of
this behavior, please reference Figure 4.7 from the results of trace-driven evaluation.

From these synthetic results, we identify the following major three take-aways:
First, for TLC drives, small working-set sizes and large reserve areas result in

enormous gains over the baseline in excess of an order of magnitude. At first blush
these gains seem egregious, but bear in mind we are starting at TLC, which has a

75

lifetime around 1,000 P/E cycles, and we transition to SLC, which has a lifetime
75 times greater. Obviously a full 75 times improvement is not expected as that is
not how the physics of flash lifetime works, nor can the entire drive be converted
to SLC and still live, but these (still large) improvements are a function of the
great difference in endurance between the types. The MLC results depict a similar
inter-relationship as we vary the parameters, however demonstrate lower gains
possible than in the TLC case. Again, this relates to the difference in lifetimes – as
MLC lasts approximately six times longer than TLC from the outset, transitioning
to SLC buys us some, but not as much relative lifetime as in the case of starting at
TLC. Similarly, latency differences between MLC and SLC are smaller than TLC
to SLC, so these gaps (both in lifetime improvements and degradations) also lessen.

Second, we are witness to a somewhat odd latency degradation in the TLC
case not in the bottom right as we would expect (highest working size, lowest
reserved area) but somewhat up from that. In analyzing the results, we find that
for reserved areas smaller than around 13%, there is no real change in lifetime or
latency. Right around 13% lifetime begins to extend, but, because there is limited
amounts of converted “fast blocks,” all too often an access results in a write to a
fast block and a normal block (because the access is larger than the smaller, fast
blocks size, and no other fast blocks may be available at that time). This results
in latencies somewhat larger than the normal block access until the reserve area
grows enough that a decent pool of fast blocks is available at any given time in
most of the invalid-page buckets.

Third, and what may have been initially most apparent, we witness extremely
similar relative behavior across low, medium, and high read-to-write ratio graphs.
We emphasize relative because the absolute number of accesses is definitely not the
same (since reads have extremely limited impact on cell lifetime) across equivalent
configurations where only read-to-write ratio is changed.

4.4.4 Trace-Driven Results

Last, we consider the efficacy of ZombieNAND in extending SSD lifetime and explore
its impact on latency over a variety of real application traces. These ten traces
represent I/O workloads in financial workloads, file servers, user home directories,
and internet SQL servers, derived from traces available at [74] and [75]. We have

76

Application Writes (in %) Reads (in %)
Trace Total Random Sequential Total Random Sequential
Fin-A 83 47 53 17 45 55
Fin-B 22 33 67 78 78 22
NFS-A 99 1 99 1 1 99
NFS-B 58 22 78 42 1 99
NFS-C 19 0 100 81 0 100
User-A 27 23 77 73 8 92
User-B 9 45 55 91 2 98
User-C 58 18 82 42 6 94
SQL-A 43 25 75 57 10 90
SQL-B 15 26 74 85 2 98

Table 4.3: Application trace access composition. Percents expressed in terms of
raw data moved.

quantified and present specifics about each trace, including the read-to-write ratio,
random vs. sequentiality of the trace, and address reuse of accesses in Table 4.3.

In order to keep our results from becoming entangled amidst too many varying
factors, we only use the first 512MB of addresses from every trace. This means
some traces run very close to only issuing 512MB of accesses (very low address
reuse), whereas others issue many gigabytes of accesses (high address reuse) before
hitting the 512MB of addresses limit. We must do this to a) make sure the traces
do not attempt to use more space than is available in our 1GB SSD, and b) to
normalize the address space accessed amongst all traces to roughly 50% of the
drive.

This does not in any way mean address reuse has been normalized across traces,
as can be seen in Figure 4.5. Those graphs sort by descending reuse and provide
volumes of accesses on the y-axis, demonstrating that while some traces exhibit
largely uniform accesses across a majority of the access space (e.g., NFS-C in Figure
4.5b), others only use a small fraction of the entire space for all of their accesses
(e.g., Fin-B in Figure 4.5a). We provide this level of detail because address reuse is
a driving factor in the efficacy of ZombieNAND, as we will explain in a moment.

We begin by dissecting the lifetime improvements brought by employing Zombi-
eNAND as shown in the overlaid bar graph in Figure 4.6. All lifetimes shown are
relative to the baseline, which has been normalized to 1, and all perform as good or
better than the baseline. Further, increased reserve areas never results in degraded
results, so all results are overlaid to demonstrate how much life an additional 10%

77

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
t
o
f
T

o
ta

l
W

ri
te

 A
c
c
e
s
s
e
s

Percent of Address Space (Addresses Sorted: Descending Reuse)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(a) Trace Address Reuse (Writes)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
t
o
f
T

o
ta

l
R

e
a
d
 A

c
c
e
s
s
e
s

Percent of Address Space (Addresses Sorted: Descending Reuse)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(b) Trace Address Reuse (Reads)

Figure 4.5: CDF plots, which describe the fraction of total accesses commonly used
addresses are accountable for. For instance, steep curves indicate a small fraction
of the address space of a specific trace accounts for a large percentage of the total
accesses, and low, slowly growing curves indicate fairly balanced accesses to a large
portion of the address space.

of reserved area buys us. For instance, in TLC SSD executions of User-A, we can
see that while 10% reserve provides extremely small improvements over the baseline,
expanding to use of 20% reserve achieves a factor of 2, and moving to 30% gets us
just short of a factor of 7. Interestingly, this trend is not consistent amongst the
traces – some benefit from 10%, but skyrocket at 20% and do not improve further
at 30%, while others do not benefit from 10% but equally improve from 20% and
30%, and yet others do not benefit from any amount of reserve.

78

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

Fin-A Fin-B NFS-A NFS-B NFS-C User-A User-B User-C SQL-A SQL-B

L
o
n
g
e
v
it
y
 I
m

p
ro

v
e
m

e
n
t
(R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e
)

Application Trace

Baseline 10% Reserve 20% Reserve 30% Reserve

(a) Trace Lifetime Comparison (TLC)

 1

 2

 3

 4

 5

Fin-A Fin-B NFS-A NFS-B NFS-C User-A User-B User-C SQL-A SQL-B

L
o
n
g
e
v
it
y
 I
m

p
ro

v
e
m

e
n
t
(R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e
)

Application Trace

Baseline 10% Reserve 20% Reserve 30% Reserve

(b) Trace Lifetime Comparison (MLC)

Figure 4.6: Length of lifetimes shown relative to baseline (normalized to 1.0) for
varying reserve areas. Our algorithm always does at least as good as the baseline,
and increased reserves always do as good or better than a smaller one. As shown,
some applications benefit tremendously (an order of magnitude in 3 of the 10 traces)
from slight increases in reserves, but may not benefit from increased reserves beyond
that, whereas others demonstrate little or no improvement over the baseline.

Analyzing these findings carefully next to the trace breakdown table and CDF
plots as presented earlier, we identify one clear and defining driver for ZombieNAND
improvements: In order for ZombieNAND to have real impact, writes must be
concentrated into a reasonably small fraction of the total address space. Looking to
our previous synthetic results, this trend is echoed there, where the working-set size
more or less defines performance. What is starkly different from those synthetic

79

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death
L
a
te

n
c
y
 R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(a) Latency Change over Life (TLC 10% Re-
served)

 0.75

 1

 1.25

 1.5

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a
te

n
c
y
 R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(b) Latency Change over Life (MLC 10% Re-
served)

 0.25
 0.5

 0.75
 1

 1.25
 1.5

 1.75
 2

 2.25
 2.5

 2.75
 3

 3.25
 3.5

 3.75
 4

 4.25
 4.5

 4.75
 5

 5.25
 5.5

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a
te

n
c
y
 R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(c) Latency Change over Life (TLC 20% Re-
served)

 0.75
 1

 1.25
 1.5

 1.75
 2

 2.25
 2.5

 2.75
 3

 3.25
 3.5

 3.75
 4

 4.25
 4.5

 4.75
 5

 5.25
 5.5

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a
te

n
c
y
 R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(d) Latency Change over Life (MLC 20% Re-
served)

 0.25
 0.5

 0.75
 1

 1.25
 1.5

 1.75
 2

 2.25
 2.5

 2.75
 3

 3.25
 3.5

 3.75
 4

 4.25
 4.5

 4.75
 5

 5.25
 5.5

 5.75
 6

 6.25
 6.5

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a
te

n
c
y
 R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(e) Latency Change over Life (TLC 30% Re-
served)

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

 2.75

 3

 3.25

 3.5

 3.75

 4

 4.25

 0 20 40 60 80 100 120 140 160 180 200

Baseline Death

L
a
te

n
c
y
 R

e
la

ti
v
e
 t
o
 B

a
s
e
lin

e

Normalized Lifetime (100=Baseline Death, 200=Death)

Fin-A
Fin-B

NFS-A
NFS-B
NFS-C
User-A
User-B
User-C
SQL-A
SQL-B

(f) Latency Change over Life (MLC 30% Re-
served)

Figure 4.7: Latencies over the entire lifetimes of the traces explored, broken down
into 10, 20, and 30 percent reserve areas for both MLC- and TLC-based SSDs and
normalized over a 200 point range. Vertical line at x-axis 100 demarcates death
of the baseline, and, if our algorithm improves lifetime for that trace, x-axis 200
indicates death of the ZombieNAND-enhanced drive. Latencies all shown relative
to the baseline, which has been normalized to 1.0.

80

results is that such randomized uniformity is not presented in any of these traces,
and therefore increasing the reserves does not always net improvements. In fact,
in our best performers, going from 20% to 30% reserve nets nothing additional.
Analysis of the address reuse graph provides evidence suggesting why: Unlike
randomized, uniform accesses as in the synthetic graphs, Fin-B, User-B, and SQL-B
all reach different volumes of accesses at different percentages of commonly used
addresses (a CDF of the synthetic I/Os would result in linear lines with varying
slopes depending upon working-set size). The high-performers tend to have very
aggressive slopes in the first few percent of the most commonly used address space,
and reach very near to 100% of all accesses performed prior to 30-40% of the
address space. Further, also unlike the simplified environment of the synthetic tests,
read-heavy workloads do demonstrate more significant lifetime improvements than
their mixed brethren with a similar write address reuse curve.

Moving onto the MLC trace-driven results, we are witness to expectedly lower
relative improvements, but more consistency in terms lifetime enhancement across
the traces. In fact, with the exception of NFS-A and NFS-B, which still do not
improve hardly at all (due to lack of write address reuse), all of the traces gain a
significant amount of lifetime relative to the best case. Furthermore, the traces
also more frequently take advantage of both the 20% and the 30% jump in reserve
area, unlike TLC, and likely due to the relative space differences between MLC and
TLC.

Finally, the time-series analysis of latency in Figure 4.7 sheds considerably more
light on the latency situation for ZombieNAND than the average latency values
did earlier. While we do not have space to fully explore the rich graphs there,
two important take-aways exist: One, although ZombieNAND does a great job of
leveraging improved latencies for deceased blocks early on in the life of the drive
for those traces it can benefit (prior to baseline death), it does not hurt the traces
which do not benefit as much from the scheme until the baseline is within 5% from
death. Two, although it is not a rule, while increased reserve does tend to improve
lifetime, it also seems to have a negative impact on the post-baseline-death latencies
for some of the traces. This is likely due to increased contention for the zombified
block pool and “spillover” accesses that stretch across zombified blocks and normal
blocks.

81

4.5 Related Work
We divide related works into three categories: First, those which laid the hardware
and physics foundation to perform this switching. Second, those which employ
bit-switching preemptively for performance reasons. And third, those which employ
bit switching for the same reasons as we do, but to lesser or different effect.

First, in [76] Taehee Cho et al. propose a dual-mode flash memory technology,
which offers both SLC-mode operations and MLC-mode operations in the same
NAND flash fabrication. While MLC mode operations use a low-voltage-based
incremental step pulse programming (ISPP) method to tightly control the cell
thresholds, SLC-mode employs three times higher voltage to reach high throughput.
Though this dual-mode NAND flash demonstrates that multiple modes are possible
on the same flash die device, they do not tackle latency variation, reliability issues,
or side-effects resulting from this architecture.

Moving onto those works which use bit-switching preemptively for performance
reasons, we see in [77] Moinuddin K. Qureshi et al. propose a Morphable Memory
System (MMS) that utilizes different latency values as observed in MLC phase
change random access memory (PCRAM). Based on incoming request and work-
loads, MMS uses different resistance values on PCRAM in an attempt to reduce
memory operational latency. Even though MMS provides insights regarding bit-
switching, it does not deal with reliability whatsoever, and furthermore the access
granularities and resistance characteristics explored differ markedly from those
in NAND flash making MMS inapplicable to this work. In [78], Sungjin Lee et
al. propose a flexible flash file system (FlexFS), which partitions NAND flash
into two sections of SLC and MLC, dynamically sizing each based on applications
requirements. This mode switching is used to powerful effect to satisfy quality
of service requirements, however, similar to MMS, FlexFS also ignores reliability
issues. Last in this group, in [79], Laura M. Grupp, et. al., propose a flexible
flash translation layer, which mimics FlexFS in a number of ways. Specifically, it
schedules performance-critical operations and bursty workloads using SLC, and
achieves such in a TLC/MLC/SLC device by revealing latency variation patterns for
both SLC, MLC and TLC amongst pages. Yet again, this only handles performance
characteristics, and importantly, all three of these works preemptively adapt the
capacity of the drive, which renders it incompatible with traditional file systems

82

and unaligned with manufacturer reliability guarantees.
Last, looking at a selection of works which most aligns with ours, we find three

in particular that take a similar approach but either do so only superficially or do so
for a different NVM type. In [80], Xavier Jimenez et. al. present, in their interactive
poster, a topical exploration of how reviving dead blocks might impact lifetime.
However, this work fails to capture all of the benefits of our approach for a number
of reasons: First and foremost, they demonstrate very marginal improvements
because they fail to fully explore the parameter space of modern SSDs, including,
but not limited to, not looking at varying reserved areas, varying working set sizes,
and a wide range of applications as we do in this work. Second, they do not examine
the impact of adapting the wear-leveling schemes in modern SSDs to improve the
longevity and performance of SSDs as they age. Last, rather than exploring this
for a general SSD architecture, they only explore a narrow use-case: Hybrid FTL
architectures. By bringing their dead MLC blocks back as SLC just for buffering
for their log-structured FTL, this results in the healthier MLC still being written
to when the logs are written out, resulting in write amplification compared to our
use case and reads failing to leverage the vastly improved speeds in SLC. Moving
onto [81], Azevedo et. al. propose “Zombie Memory,” which on its surface sounds
very similar to our work. However, their work actually explores an orthogonal
approach to lifetime extension, and one which delivers no performance benefits
for their MLC PCM. In fact, as their PCM ages and their techniques come to the
fore, the performance degrades. Specifically, they look at using error correcting
codes across partially dead blocks to extend one block’s lifetime by sourcing parts
of other dead blocks, and they never consider changing the bit mode from MLC
to SLC; whatever bit-mode it starts as, it stays that way. This scheme could be
applied in tandem with ours to multiplicative lifetime gains, a consideration of ours
for future work. Last, in [82], Dong et. al. propose AdaMS, an adaptive PCM
design to switch from MLC to SLC when PCM-specific failure events occur, and
they design circuitry around this specific functionality to cope with the transition.
Because the failure events, lifetime model used, circuitry designed, and algorithm
proposed all rely on very specific PCM characteristics, which NAND flash do not
share, their approach, while similar, is not applicable to NAND flash storage.

83

4.6 Conclusion
As widespread adoption and new uses arise for NAND-flash-based SSDs, pressure
for higher density will only increase. To achieve this, manufacturers very well may
continue stuffing more bits into flash cells, or continue shrinking them further when
they are already struggling to retain data at the current feature size generation.
Without intervention, this will reignite worries over flash longevity people were
finally beginning to get over. Enter ZombieNAND, our novel NAND-cell-reviving
scheme with accompanying modified garbage-collection and “wear-unleveling” algo-
rithm to do something with those otherwise deceased and unusable flash cells, and
which does so without jeopardizing any manufacturer-specified guarantees of P/E
cycles.

Using a heavily-modified simulator we added a flash physics engine to so we
could predict lifetime of changing cells with high-fidelity, we evaluate and analyze
ZombieNAND across over five-hundred synthetic and sixty application trace-driven
experiments. We demonstrate that ZombieNAND succeeds in extending the lifetime
of TLC and MLC SSDs, sometimes in excess of an order of a magnitude, and for
most of the traces and synthetic configurations run over two times. Moreover,
we show that it absolutely does not deteriorate the lifetime for workloads that it
cannot help, and equally importantly, does not degrade the latency of runs until
after a normal SSD without ZombieNAND on-board would already be dead. In
fact, for around half of our experiments, it consistently delivers in excess of 25%
faster latencies than the baseline. Finally, we provide thorough analysis of these
results and detail the property of the traces used to gather them.

84

Chapter 5 |
Conclusion

In a computing landscape increasingly “data-driven,” this dissertation highlights
the existing and ever-growing irony that simply getting to said data becomes a
more costly, lengthy, and complicated process by the day. Driven in large part by a
widening bandwidth gap between the processor and stable storage, herein we have
proposed and explored a protean approach to shortening or constructing bridges
across that gap in three major ways:

First, in RainFS, we enable data consolidation in the face of rampant storage
fragmentation, which serves to bring as many storage units into the same pool as
possible, reduce data duplication, and maximize aggregate performance. Second, we
develop and demonstrate that intelligent data reduction is possible with the advent
of tools like TreeChunks, which quantify the impact both in terms of performance
and capacity change. By enabling intelligent data reduction evaluation, old and
new schemes alike can be more readily adopted to fit more data over an equally
sized bridge across the bandwidth gap. Third and last, we explore a new scheme
ZombieNAND to overcome the longevity hurdle NAND-flash-based SSDs face
in displacing their slower, spinning, magnetic brethren. Considering these three
approaches in tandem, we argue future data storage scientists are far better equipped
to cope with the increasing bandwidth gap at their doorstep.

85

Bibliography

[1] Box, G. E. and N. R. Draper (1987) Empirical model-building and response
surfaces., John Wiley & Sons.

[2] Anderson, C. (2008) “The end of theory,” Wired magazine, 16.

[3] Norvig, P., “All we want are the facts, ma’am,” http://norvig.com/
fact-check.html.

[4] “TOP500 Supercomputer Sites,” http://www.top500.org/.

[5] Petitet, A., R. C. Whaley, J. Dongarra, and A. Cleary (2008), “HPL-
a portable implementation of the high-performance Linpack benchmark for
distributed-memory computers,” http://www.netlib.org/benchmark/hpl/.

[6] Schaller, R. R. (1997) “Moore’s law: past, present and future,” Spectrum,
IEEE, 34(6), pp. 52–59.

[7] Shiroishi, Y., K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri,
H. Tanaka, H. Mutoh, and N. Yoshikawa (2009) “Future Options for
HDD Storage,” Magnetics, IEEE Transactions on, 45(10), pp. 3816–3822.

[8] Kryder, M. H., E. C. Gage, T. W. McDaniel, W. A. Challener,
R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden (2008) “Heat
assisted magnetic recording,” Proceedings of the IEEE, 96(11), pp. 1810–1835.

[9] Richter, H., A. Dobin, O. Heinonen, K. Gao, R. Veerdonk, R. Lynch,
J. Xue, D. Weller, P. Asselin, M. Erden, et al. (2006) “Recording on
bit-patterned media at densities of 1 Tb/in and beyond,” Magnetics, IEEE
Transactions on, 42(10), pp. 2255–2260.

[10] Wood, R., M. Williams, A. Kavcic, and J. Miles (2009) “The feasibility
of magnetic recording at 10 terabits per square inch on conventional media,”
Magnetics, IEEE Transactions on, 45(2), pp. 917–923.

[11] Dean, J. and S. Ghemawat (2008) “MapReduce: Simplified Data Processing
on Large Clusters,” Commun. ACM, 51(1), pp. 107–113.
URL http://doi.acm.org/10.1145/1327452.1327492

86

[12] Ghemawat, S., H. Gobioff, and S.-T. Leung (2003) “The Google File
System,” in Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, SOSP ’03, ACM, New York, NY, USA, pp. 29–43.
URL http://doi.acm.org/10.1145/945445.945450

[13] Chang, F., J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber (2008) “Bigtable:
A Distributed Storage System for Structured Data,” ACM Trans. Comput.
Syst., 26(2), pp. 4:1–4:26.
URL http://doi.acm.org/10.1145/1365815.1365816

[14] “Hadoop,” http://hadoop.apache.org/.

[15] Borthakur, D., “The Hadoop Distributed File System: Architecture and
Design,” hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf.

[16] Chang, F., J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber (2006) “Bigtable:
A Distributed Storage System for Structured Data,” in Proceedings of the
7th Symposium on Operating Systems Design and Implementation, OSDI ’06,
USENIX Association, Berkeley, CA, USA, pp. 205–218.
URL http://dl.acm.org/citation.cfm?id=1298455.1298475

[17] Hindman, B., A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica (2011) “Mesos: A Platform for
Fine-grained Resource Sharing in the Data Center,” in Proceedings of the
8th USENIX Conference on Networked Systems Design and Implementation,
NSDI’11, USENIX Association, Berkeley, CA, USA, pp. 22–22.
URL http://dl.acm.org/citation.cfm?id=1972457.1972488

[18] “Apache Hadoop NextGen MapReduce (YARN),” http://hadoop.apache.
org/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html.

[19] et. al., W. G. (2009) MPI: A Message-Passing Interface Standard.

[20] Ligon, . I., W. B. and R. B. Ross (1996) “Implementation and Performance
of a Parallel File System for High Performance Distributed Applications,” in
Proceedings of the 5th IEEE International Symposium on High Performance
Distributed Computing, HPDC ’96, IEEE Computer Society, Washington, DC,
USA, pp. 471–.
URL http://dl.acm.org/citation.cfm?id=525592.823101

[21] “The Lustre File System,” http://wiki.lustre.org/index.php/Main_Page.

87

[22] Schmuck, F. and R. Haskin (2002) “GPFS: A Shared-disk File System for
Large Computing Clusters,” in Proceedings of the 1st USENIX Conference on
File and Storage Technologies, FAST’02, USENIX Association, Berkeley, CA,
USA, pp. 16–16.
URL http://dl.acm.org/citation.cfm?id=1973333.1973349

[23] Welch, B., M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou (2008) “Scalable Performance of the Panasas
Parallel File System,” in Proceedings of the 6th USENIX Conference on File
and Storage Technologies, FAST’08, USENIX Association, Berkeley, CA, USA,
pp. 2:1–2:17.
URL http://dl.acm.org/citation.cfm?id=1364813.1364815

[24] Buck, J. B., N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn,
N. Polyzotis, and S. Brandt (2011) “SciHadoop: Array-based Query
Processing in Hadoop,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’11,
ACM, New York, NY, USA, pp. 66:1–66:11.
URL http://doi.acm.org/10.1145/2063384.2063473

[25] Buck, J., N. Watkins, G. Levin, A. Crume, K. Ioannidou, S. Brandt,
C. Maltzahn, N. Polyzotis, and A. Torres (2013) “SIDR: Structure-
aware Intelligent Data Routing in Hadoop,” in Proceedings of SC13: Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’13, ACM, New York, NY, USA, pp. 73:1–73:12.
URL http://doi.acm.org/10.1145/2503210.2503241

[26] et. al., S. S. (2003), “Network File System (NFS) version 4 Protocol,” .

[27] Hertel, C. (2003) Implementing CIFS: The Common Internet File System,
Prentice Hall Professional Technical Reference.

[28] “Amazon S3,” http://aws.amazon.com/s3/.

[29] “KosmosFS,” http://code.google.com/p/kosmosfs/.

[30] Tantisiriroj, W., S. W. Son, S. Patil, S. J. Lang, G. Gibson, and
R. B. Ross (2011) “On the Duality of Data-intensive File System Design:
Reconciling HDFS and PVFS,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’11,
ACM, New York, NY, USA, pp. 67:1–67:12.
URL http://doi.acm.org/10.1145/2063384.2063474

[31] “PoweredBy Hadoop,” http://wiki.apache.org/hadoop/PoweredBy.

[32] O’Malley, O. (2008) “Terabyte sort on apache hadoop,” Yahoo.

88

[33] O’Malley, O. and A. Murthy (2009) “Winning a 60 second dash with a
yellow elephant,” Proceedings of sort benchmark.

[34] “Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster,” http://www.top500.org/
system/177999.

[35] Mihailescu, M., G. Soundararajan, and C. Amza (2013) “MixApart:
Decoupled Analytics for Shared Storage Systems,” in Proceedings of the 11th
USENIX Conference on File and Storage Technologies, FAST’13, USENIX
Association, Berkeley, CA, USA, pp. 133–146.
URL http://dl.acm.org/citation.cfm?id=2591272.2591287

[36] Ananthanarayanan, R., K. Gupta, P. Pandey, H. Pucha, P. Sarkar,
M. Shah, and R. Tewari (2009) “Cloud Analytics: Do We Really Need to
Reinvent the Storage Stack?” in Proceedings of the 2009 Conference on Hot
Topics in Cloud Computing, HotCloud’09, USENIX Association, Berkeley, CA,
USA.
URL http://dl.acm.org/citation.cfm?id=1855533.1855548

[37] “EMC Isilon OneFS,” http://www.emc.com/domains/isilon/index.htm.

[38] “The NetApp OpenSolution for Hadoop,” http://www.netapp.com/us/
solutions/big-data/hadoop.aspx.

[39] Inc., P., “.ZIP File Format Specification,” .
URL http://www.pkware.com/documents/casestudies/APPNOTE.TXT

[40] loup Gailly, J., “gzip,” .
URL http://www.gnu.org/software/gzip/gzip.html

[41] Seward, J., “bzip2,” .
URL http://www.bzip.org/

[42] Corporation, M., “Microsoft Cabinet Format,” .
URL http://msdn.microsoft.com/en-us/library/bb267310.aspx

[43] Pavlov, I., “7-Zip,” .
URL http://www.7-zip.org/

[44] Roshal, E., “WinRAR Archiver, a powerful tool to process RAR and ZIP
files,” .
URL http://www.rarlab.com/

[45] N/A, “BTRFS Wiki,” .
URL https://btrfs.wiki.kernel.org/index.php/Main_Page

89

[46] Corporation, O., “ZFS,” .
URL http://www.opensolaris.org/os/community/zfs/

[47] Corporation, M., “NTFS Technical Reference,” .
URL http://technet.microsoft.com/en-us/library/cc758691%28WS.
10%29.aspx

[48] Ruijter, M., “lessfs: Open Source data de-duplication,” .
URL http://www.lessfs.com/wordpress/

[49] Corporation, N., “NetApp Deduplication and Compression,” .
URL http://www.netapp.com/us/products/platform-os/dedupe.aspx

[50] Corporation, E., “Data Domain Deduplication Storage Systems,” .
URL http://www.emc.com/data-protection/data-domain/
data-domain-deduplication-storage-systems.htm

[51] Corporation, M., “Data Deduplication Overview,” .
URL http://technet.microsoft.com/en-us/library/hh831602.aspx

[52] Deutsch, P., “DEFLATE Compressed Data Format Specification version
1.3,” .
URL https://tools.ietf.org/html/rfc1951

[53] Huffman, D. A. et al. (1952) “A method for the construction of minimum
redundancy codes,” Proceedings of the IRE, 40(9), pp. 1098–1101.

[54] Team, C., “The LZ77 algorithm,” .
URL http://oldwww.rasip.fer.hr/research/compress/algorithms/
fund/lz/lz77.html

[55] Blelloch, G. E. (2001), “Introduction to data compression,” .
URL http://www.cs.cmu.edu/~guyb/realworld/compression.pdf

[56] N/A, “LZ4 Extremely Fast Compression Algorithm,” .
URL http://code.google.com/p/lz4/

[57] ———, “BTRFS Wiki - What happens to incompressible files?” .
URL https://btrfs.wiki.kernel.org/index.php/Compression#What_
happens_to_incompressible_files.3F

[58] Bolosky, W. J., S. Corbin, D. Goebel, and J. R. Douceur (2000)
“Single Instance Storage in Windows® 2000,” in Proceedings of the 4th
Conference on USENIX Windows Systems Symposium - Volume 4, WSS’00,
USENIX Association, Berkeley, CA, USA, pp. 2–2.
URL http://dl.acm.org/citation.cfm?id=1267102.1267104

90

[59] Rivest, R. (1992), “The MD5 message-digest algorithm,” .
URL http://tools.ietf.org/html/rfc1321

[60] Eastlake, D. and P. Jones (2001), “US secure hash algorithm 1 (SHA1),” .

[61] of Standards, N. I. and Technology, “Descriptions of SHA-256,
SHA-384, and SHA-512,” .
URL http://csrc.nist.gov/groups/STM/cavp/documents/shs/
sha256-384-512.pdf

[62] Quinlan, S. and S. Dorward (2002) “Venti: A New Approach to Archival
Storage,” in Proceedings of the 1st USENIX Conference on File and Storage
Technologies, FAST’02, USENIX Association, Berkeley, CA, USA, pp. 7–7.
URL http://dl.acm.org/citation.cfm?id=1973333.1973340

[63] Rabin, M. O. (1981) Fingerprinting by random polynomials, Center for
Research in Computing Techn., Aiken Computation Laboratory, Univ.

[64] Soundararajan, G., V. Prabhakaran, M. Balakrishnan, and T. Wob-
ber (2010) “Extending SSD Lifetimes with Disk-based Write Caches,” in
Proceedings of the 8th USENIX Conference on File and Storage Technologies,
FAST’10, USENIX Association, Berkeley, CA, USA, pp. 8–8.
URL http://dl.acm.org/citation.cfm?id=1855511.1855519

[65] Cai, Y., E. F. Haratsch, O. Mutlu, and K. Mai (2013) “Threshold
Voltage Distribution in MLC NAND Flash Memory: Characterization, Analy-
sis, and Modeling,” in Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’13, EDA Consortium, San Jose, CA, USA, pp.
1285–1290.
URL http://dl.acm.org/citation.cfm?id=2485288.2485597

[66] Mohan, V., T. Siddiqua, S. Gurumurthi, and M. R. Stan (2010) “How
I Learned to Stop Worrying and Love Flash Endurance,” in Proceedings of
the 2Nd USENIX Conference on Hot Topics in Storage and File Systems,
HotStorage’10, USENIX Association, Berkeley, CA, USA, pp. 3–3.
URL http://dl.acm.org/citation.cfm?id=1863122.1863125

[67] Lee, S., T. Kim, K. Kim, and J. Kim (2012) “Lifetime Management of
Flash-based SSDs Using Recovery-aware Dynamic Throttling,” in Proceedings
of the 10th USENIX Conference on File and Storage Technologies, FAST’12,
USENIX Association, Berkeley, CA, USA, pp. 26–26.
URL http://dl.acm.org/citation.cfm?id=2208461.2208487

[68] Godard, B., J.-M. Daga, L. Torres, and G. Sassatelli (2007) “Eval-
uation of Design for Reliability Techniques in Embedded Flash Memories,”

91

in Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’07, EDA Consortium, San Jose, CA, USA, pp. 1593–1598.
URL http://dl.acm.org/citation.cfm?id=1266366.1266716

[69] Bucy, J. S., J. Schindler, S. W. Schlosser, and G. R. Ganger (2008)
“The DiskSim Simulation Environment Version 4.0 Reference Manual,” .

[70] Agrawal, N., V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy (2008) “Design Tradeoffs for SSD Performance,” in
USENIX 2008 Annual Technical Conference on Annual Technical Conference,
ATC’08, USENIX Association, Berkeley, CA, USA, pp. 57–70.
URL http://dl.acm.org/citation.cfm?id=1404014.1404019

[71] NAND Flash Memory MT29F32G08ABAAA, MT29F64G08AFAAA SLC
datasheet, Tech. rep., Micron Technology, Inc.

[72] NAND Flash Memory MT29F8G08MAAWC, MT29F16G08QASWC MLC
datasheet, Tech. rep., Micron Technology, Inc.

[73] NAND Flash Memory MT29F64G08EBAA TLC datasheet, Tech. rep., Micron
Technology, Inc.

[74] Bates, K. and B. McNutt, “UMASS Trace Repository,” .
URL traces.cs.umass.edu/index.php/Main/Traces

[75] “SNIA IOTTA Repository,” .
URL http://iotta.snia.org/tracetypes/3

[76] Cho, T., Y.-T. Lee, E.-C. Kim, J.-W. Lee, S. Choi, S. Lee, D.-H. Kim,
W.-G. Han, Y.-H. Lim, J.-D. Lee, J.-D. Choi, and K.-D. Suh (2001)
“A dual-mode NAND flash memory: 1-Gb multilevel and high-performance
512-Mb single-level modes,” Solid-State Circuits, IEEE Journal of, 36(11), pp.
1700–1706.

[77] Qureshi, M. K., M. M. Franceschini, L. A. Lastras-Montaño, and
J. P. Karidis (2010) “Morphable Memory System: A Robust Architecture
for Exploiting Multi-level Phase Change Memories,” in Proceedings of the 37th
Annual International Symposium on Computer Architecture, ISCA ’10, ACM,
New York, NY, USA, pp. 153–162.
URL http://doi.acm.org/10.1145/1815961.1815981

[78] Lee, S., K. Ha, K. Zhang, J. Kim, and J. Kim (2009) “FlexFS: A Flexible
Flash File System for MLC NAND Flash Memory,” in Proceedings of the 2009
Conference on USENIX Annual Technical Conference, USENIX’09, USENIX
Association, Berkeley, CA, USA, pp. 9–9.
URL http://dl.acm.org/citation.cfm?id=1855807.1855816

92

[79] Grupp, L. M., J. D. Davis, and S. Swanson (2013) “The Harey Tortoise:
Managing Heterogeneous Write Performance in SSDs,” in Proceedings of the
2013 USENIX Conference on Annual Technical Conference, USENIX ATC’13,
USENIX Association, Berkeley, CA, USA, pp. 79–90.
URL http://dl.acm.org/citation.cfm?id=2535461.2535472

[80] Jimenez, X., D. Novo, and P. Ienne (2013) “Phoenix: Reviving MLC
blocks as SLC to extend NAND flash devices lifetime,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2013, pp. 226–229.

[81] Azevedo, R., J. D. Davis, K. Strauss, P. Gopalan, M. Manasse,
and S. Yekhanin (2013) “Zombie Memory: Extending Memory Lifetime
by Reviving Dead Blocks,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13, ACM, New York, NY, USA,
pp. 452–463.
URL http://doi.acm.org/10.1145/2485922.2485961

[82] Dong, X. and Y. Xie (2011) “AdaMS: Adaptive MLC/SLC Phase-change
Memory Design for File Storage,” in Proceedings of the 16th Asia and South
Pacific Design Automation Conference, ASPDAC ’11, IEEE Press, Piscataway,
NJ, USA, pp. 31–36.
URL http://dl.acm.org/citation.cfm?id=1950815.1950821

93

Vita
Ellis H. Wilson III

Education
The Pennsylvania State University, University Park, PA, US. Ph.D., Com-
puter Science and Engineering, August 2014.
La Salle University, Philadelphia, PA, US. B.S., Computer Science, May 2009.

Honors and Awards
• Supercomputing: Best Paper Finalist & Best Student Paper Finalist, 2013
• Supercomputing: 2nd Place, ACM Student Research Competition, 2012
• The Pennsylvania State University: College of Engineering Fellowship, 2009
• NCAA Division I Cross Country: Atlantic 10 All-Conference, 2007
• NCAA Division I Cross Country: Atlantic 10 Academic All-Conference, 2007
• Boy Scouts: Eagle Scout, 2005

Publications

• Ellis H. Wilson III, Mahmut T. Kandemir, Garth Gibson. “Will They
Blend?: Exploring Big Data Computation atop Traditional HPC NAS Storage.”
International Conference on Distributed Computing Systems, 2014.

• Ellis H. Wilson III, Myoungsoo Jung, Mahmut T. Kandemir. “Zom-
bieNAND: Resurrecting Dead NAND Flash for Improved SSD Longevity.”
International Symposium on Modeling Analysis and Simulation of Computer
and Telecommunication Systems, 2014.

• Myoungsoo Jung, Wonil Choi, Shuwen Gao, Ellis H. Wilson III, David
Donofrio, John Shalf, Mahmut Taylan Kandemir. “NANDFlashSim: High-
Fidelity, Micro-Architecture-Aware NAND Flash Memory Simulation.” ACM
Transactions on Storage. In Submission.

• Myoungsoo Jung, Ellis H. Wilson III, Wonil Choi, John Shalf, Hasan Metin
Aktulga, Chao Yang, Erik Saule, Umit V. Catalyurek, Mahmut Kandemir.
“Exploring the Future of Out-Of-Core Computing with Compute-Local Non-
Volatile Memory.” Supercomputing, 2013.

• Ellis H. Wilson III. “Performing Cloud Computation on a Parallel File
System.” ACM Student Research Competition at Supercomputing, 2012.

• Myoungsoo Jung, Ellis H. Wilson III, Mahmut Kandemir. “Physically
Addressed Queueing (PAQ): Improving Parallelism in Solid State Disks.”
International Symposium on Computer Architecture, 2012.

• Myoungsoo Jung, Ellis H. Wilson III, David Donofrio, John Shalf, Mahmut
Kandemir. “NANDFlashSim: Intrinsic Latency Variation Aware NAND Flash
Memory System Modeling and Simulation at Microarchitecture Level.” IEEE
Conference on Massive Data Storage, 2012.

